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Abstract

Automated reasoning is a prerequisite for computers to be able to deduce logical con-
clusions, i.e. to make decisions on their own. It can for example be used to prove
mathematical theorems. This report presents implementations of three automated the-
orem provers capable of proving theorems in first-order logic. They are based on res-
olution, narrowing and method of analytic tableau and are compared with respect to
performance, readability of generated proofs and difficulty of implementation.



Sammanfattning

Automatiserat resonerande ér en forutséittning for att datorer ska kunna hérleda logiska
slutledningar, d.v.s. att kunna ta egna beslut. Det kan ocksa anvindas for att exempel-
vis bevisa logiska teorem. Denna rapport kommer att presentera implementationer av
tre automatiska teorembevisare som klarar av att bevisa teorem i predikatlogik. De &r
baserade pa resolution, narrowing och semantisk tableau och jamférs med avseende pa
prestanda, lasbarhet av genererade bevis och svarighetsgrad vid implementering.
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Kapitel 1

Inledning

1.1 Bakgrund

Detta avsnitt kommer att motivera varfor automatiserad teorembevisning &r av intresse
att studera och vilka foérdelar som finns i forhallande till ménsklig teorembevisning.
Logikens ursprung kommer att presenteras tillsammans med anledningen till att den &r
en forutsittning for att omradet automatiserad teorembevisning existerar.

1.1.1 Logik

Logik &r nédvéandig for all vetenskap. Utan mojligheten att dra logiska slutledningar ar
det inte mojligt att veta om ens slutsatser ar giltiga eller ej. Logik anvinds pa flera olika
nivaer inom olika vetenskapliga omraden, den spelar en mycket central roll i sa skilda
omraden som matematik, sociologi eller historia.

Ordet logik kommer fran grekiskans logikos med betydelserna ’som hor till talet’ eller
‘fornuftig’. Enligt Platon uppstod logiken ur utbytandet av argument och motargument,
s.k. dialektik!, och studerades for kunna fora en 6vertygande dialog. Som vetenskap
anses logiken ha grundats av Aristoteles, som med sin ldra om syllogismer understkte
giltigheten hos slutledningar utifran de fyra logiska formlerna: ”alla A dr B”, "nagra
A dr B”, "inga A #r B” och "nagra A ar inte B”. Utvecklingen har sedan dess gatt
mycket langsamt och det &r férst under senare hélften av 1800-talet som det sker nagra
storre fordndringar. Dessa kom genom George Booles inférande av klasslogik och Gottlob
Freges kvantifieringar och predikatlogik.

Logiken kan delas upp i formell och informell logik. Informell logik berdr logik i
argumentationer i naturligt sprak, déar Platons dialoger &r typiska exempel. Formell
logik &r mer svardefinierat. Vi véljer att se formell logik som symbolisk logik, det vill
séga studien av symboliska abstraktioner som beskriver de formella elementen i logisk
inferens.

Traditionellt har logiken ansetts tillhora filosofin, men under boérjan av 1900-talet
borjade man studera det som en grund till matematiken. Ett exempel pa detta dr Hil-
berts program vars mal bland annat var att formalisera alla da existerande matematiska
teorier till en &dndlig, komplett méngd axiom och i detta system bevisa att man inte kan
deducera nagon motségelse, det vill sdga att systemet ar konsistent.

Under senare delen av 1900-talet har logiken spridit sig till fler omraden dér den
blivit en mycket viardefull tillgang. Ett exempel dr automatiserat resonerande, som detta
projekt handlar om, vilket &r ett subfalt till artificiell intelligens.

1Plocka isir el. samtalskonst.



1.1.2 Automatisk teorembevisning

Det finns manga argument for att automatisera teorembevisning. Till att borja med kan
det vara ett enformigt arbete for en ménniska att bevisa vildigt manga teorem. Detta
fick Whitehead och Russel erfara under arbetet med Principia Mathematica, vilket var
ett forsok att héirleda alla matematiska sanningar fran en véldefinierad méngd axiom
och inferensregler i symbolisk logik. Det fanns en planerad fjirde volym om geometri
som aldrig blev fardigstélld eftersom de blev utmattade av arbetet med de tidigare
volymerna. Nésta argument dr det faktum att ménniskor gér misstag, en dator gor det
dédremot inte (givet att den har blivit korrekt programmerad av en miénniska). Bevis
kan latt bli ooverskadliga for en méanniska, vilket gor det vildigt svart att arbeta med
dem. Det kan &ven finnas ett virde i att det &r just en maskin som drar slutsatsen
eftersom den da kan borja dra sjilvstéindiga rationella slutsatser. Detta &r ett av malen
for forskningen inom artificiell intelligens.

Ett exempel pa anvindningsomraden for automatiska teorembevisare dr inom ut-
veckling av processorer. Bade Intel och AMD har anvint automatiska teorembevisare
for att verifiera att deras implementation av flyttalsdivision &r korrekt [14]. Ett annat
exempel &r ett program skrivet av Alan Newell, Herbert Simon och J. C. Shaw redan
1955 som hette Logic Theorist. Detta program lyckades bevisa 38 av de forsta 52 teo-
remen i Principia Mathematica, det lyckades till och med hitta nya och mer eleganta
bevis till vissa teorem [25].

1.2 Syfte

Projektets syfte &ar att studera olika implementationsmetoder for att verifiera, bevisa och
visualisera logiska slutledningar samt att ta fram en representation av bevis. I arbetet
studeras predikatlogik med naturlig deduktion som deduktionskalkyl.

Studien berdr tre olika metoder for automatisk teorembevisning: resolution, seman-
tisk tableau och narrowing. Dessa metoder har jamforts utifran prestanda, implementa-
tionssvarighet, ldsbarhet av genererade bevis samt vilka sorters problem de olika meto-
derna arbetar bast med.

1.3 Metod

Tidigt under projektets gang beslutades att det funktionella programmeringsspraket
Haskell skulle anvindas. En av anledningarna till detta var Haskells stod for rekursi-
va datatyper vilket ar ett véldigt naturligt sétt att representera olika strukturer inom
predikatlogik. Detta eftersom manga av strukturerna &r rekursivt definierade.

For att direkt komma igang med att definiera det logiska spraket beslutades att
BNFC [20] skulle anvéindas. BNFC &r ett hjdlpmedel vid kompilatorkonstruktion och
genererar funktionalitet for lexikal- och syntaktisk analys utifran en anvéndardefinierad
BNF2-grammatik. Meningen med detta var att snabbt fa en stabil grund att bygga
vidare pa.

Arbetsgangen har tidsméssigt varit indelad i tre perioder. Under den forsta defini-
erades projektmal och programmeringssprak samt ¢vriga verktyg. Under denna period
ldste projektgruppen dven in sig pa predikatlogik.

I den andra perioden definierades grammatiken for det logiska spraket. Vidare im-
plementerades datastrukturer for att representera bevis samt konverteringsfunktioner
for att konvertera mellan dessa. Slutligen for samma period konstruerades en bevis-

2Backus—Naur form



verifierare samt funktionalitet for visualisering av bevis pa listform och som naturliga
deduktiontrad i IWTEX.

Tillsist i den tredje perioden delades projektgruppen upp i mindre delgrupper som
tilldelades varsitt omrade inom teorembevisning. Delgrupperna implementerade varsin
teorembevisare vilka slutligen jamfordes med hinsyn till prestanda, lasbarhet av gene-
rerade bevis och implementationssvarighet.

1.4 Projektmal

Malet med projektet dr att implementera tre teorembevisare och dra slutsatser basera-
de pa jamforelser av dessa. De baseras pa olika metoder for teorembevisning och déarfor
produceras bevis till teorem pa olika sétt. Den forsta dr baserad pa inferensregeln re-
solution, den andra dr semantisk tableau och den tredje dr narrowing. For att kunna
gora detta ska en representation av bevis tas fram och for verifiering av korrektheten
hos genererade sadana implementeras dven en bevisverifierare. Denna anvinds till att
bade kontrollera bevis genererade av teorembevisarna och bevis som anvéndaren skriver
in. Till sist skall det vara mdojligt att visualisera bevis pa ett lattlisligt och tydligt sétt.
Hiér visas en komplett lista av projektmalen:

e Framtagning av en logik av typen (forsta ordningens) predikatlogik.
e Framtagning av en representation av bevis.

e Framtagning av en abstrakt syntax som tillater oversittning fran text till den
interna representationen av formler och bevis.

e Implementering av en bevisverifierare.
e Visualisering av bevis pa listform samt triadform.
e Funktionalitet for konvertering av bevis mellan list- och tradform.

e Implementering av teorembevisare som bygger pa inferensregeln resolution, seman-
tisk tableau och stkalgoritmen narrowing.



Kapitel 2

Teor1l

I detta kapitel definieras och forklaras det logiska system som projektet beror. En deduk-
tionskalkyl med tillhérande inferensregler beskrivs och allménna egenskaper for logiska
system definieras. Avslutningsvis beskrivs teorin for de tre bevismetoder som studien
handlar om.

2.1 Predikatlogik

For att kunna dra otvetydiga slutsatser behovs ett formellt sprak att gora detta i. Valet
ar en logik av forsta ordningen vilken har en stor uttryckbarhet! samtidigt som den ir,
till skillnad fran naturliga sprak, helt otvetydig. Den innehaller grundliggande konnek-
tiver fran satslogiken samt predikat och kvantifierare, vilket &r forutsittningen for att
en logik ska vara av forsta ordningen. Predikatlogik &r tillrackligt kraftfullt att uttrycka
och formalisera bland annat tva av de viktigare matematiska grundstenarna. Den forsta
ar en méngdlira formulerad genom axiom kallad ZFC?[12], dir man forscker undvika
klassiska motségelser som t.ex. Russels paradox[24]. Den andra #r Peano-aritmetik vil-
ket dr ett aritmetiskt system kraftfullt nog att representera de naturliga talen genom
ett antal rekursiva axoim. Dock kan predikatlogik inte representera sadant som hur ofta
ett predikat P haller.

Formler byggs upp rekursivt av literaler ihopkopplade med unéra och binédra kon-
nektiver. Nedan konstrueras ett formellt sprak dir syntaxen och semantiken forklaras.
Med detta sprak anvinds en deduktionskalkyl som beskrivs i avsnitt 2.2.

2.1.1 Termer

En term &r ett uttryck som refererar till ett objekt och &r antingen en konstant, variabel
eller funktion. En variabel kan anta vilket virde som helst som en term kan anta. En
funktion bestar av en identifierare samt en lista med parametrar. Dessa dr i sin tur
termer, vilket gor en funktion till en rekursiv struktur.

Definition 1 Termer

e Vilken variabel som helst 4r en term.

e En funktion med noll aritet® kallas for en konstant och &r en term.

1Eng. Expressability.
2Eng. Zermelo-Fraenkel set theory, with the axiom of choice.
3 Aritet #r antalet inparametrar.



e Om ty,...,t, &r termer och f dr en funktion med aritet n > 0 sa ar f(¢1,...,t,) en
term.

Ett exempel pa en funktion dr bror(zx), vilket motsvarar objektet som &r bror till z, dér
z &r en variabel. Om funktionen skrivs om till bror(John) sa motsvarar detta Johns
bror. Hir dr *John’ en konstant. Genomfors ytterligare en dndring; bror(far(John)) si
kommer denna funktion returnera objektet som &r Johns farbror. Variabler, konstanter
och funktionsidentifierare skrivs med sma bokstéver.

2.1.2 Formler

En formel kallas vilbildad omm nedanstaende regler rekursivt kan appliceras tills varje
delformel delats upp i atomer. De nagot avancerade byggstenarna for formler kommer
forst att forklaras kort och sedan foljer en formell definition av en formel.

Ett predikat liknar en funktion, men istéllet for att returnera ett objekt, returnerar
det istéllet ett boolskt virde. Absurdheten indikerar att nagot dr absurt, t.ex. att ¢ och
—p existerar samtidigt i samma kontext. Denna formel skrivs 1. Hér introduceras tva
kvantifierare, allkvantifiering och existenskvantifiering, som bada kvantifierar éver en
viss variabel . Allkvantifiering innebér att en given formel giller for samtliga , medan
en existenskvantifiering séger att formeln géller for minst ett fall av x.

Definition 2 Formler

e Om ¢ &ar en formel , da dr —¢ en formel.
e Om ¢ och v dr formler, da &r &ven @ A, @ V ¥, ¢ — 1 formler.
e Om ¢ dr en formel och x &r en variabel sa &r bade Vz. ¢ och 3z. ¢ en formel.

e Om P idr en predikatsymbol med aritet n > 1 och om ¢y, ...,%, &r termer sa &r
P(tq,...,t,) en formel.

e Vilken term ¢ som helst dr en formel.

e | ir en formel.
De tva forsta reglerna innehaller konnektiver som beskrivs nedan:

e Konnektivet A kallas konjunktion och skall tolkas som ’och’. For att en formel med
denna pa toppniva ska vara sann maste bada delformlerna vara sanna.

e Nista konnektiv kallas disjunktion och skrivs V. Detta konnektiv tolkas som ’eller’.
En formel med denna pa toppniva dr sann om minst en av delformlerna dr sanna.

e Konnektivet — kallas implikation och innebér att den vinstra delformeln medfor
den hogra. En formel p — ¢ utliises om p sa q”. En formel med implikation &r
endast falsk om den vénstra delformeln dr sann och den hogra dr falsk.

e Slutligen kommer konnektivet = som kallas negation. En formel —¢ dr endast sann
om ¢ &r falsk.

Konnektiverna A, V och — ar triviala men — &r inte lika l4tt att forsta. Resomanget for
den sistndmnda foljer: om den vénstra delformeln &dr sann sa borde dven den hogra vara
sann, om den vénstra delformeln &r falsk, spelar den hogra ingen roll. Exempelvis om
det regnar medfor detta att marken &r blot. Om det inte regnar kan marken antingen
vara torr eller blot. Det kan ha varit uppehall tillrickligt lénge for att marken ska ha



torkat eller det kan nyss ha slutat regna vilket innebér att marken fortfarande &r blot.
Faktumet att det inte regnar utesluter inte nagot av de tva alternativen. Slutsatsen att
marken #r torr pa grund av att det regnar, dr dock felaktig.

Semantiken for dessa konnektiver kan enkelt beskrivas med sanningsvérdestabeller,
vilket visas i tabell 2.1.2:

Tabell 2.1: Sanningtabell over satslogiska konnektiver

L e | & Jery ] | e | & Jevy|
Sant Sant Sant Sant Sant Sant
Sant | Falskt | Falskt Sant | Falskt | Sant

Falskt | Sant | Falskt Falskt | Sant Sant
Falskt | Falskt | Falskt Falskt | Falskt | Falskt

[ o | ¥ Je—v]
Sant Sant Sant ’ ¥ ‘ P ‘
Sant | Falskt | Falskt Sant | Falskt
Falskt | Sant Sant Falskt | Sant
Falskt | Falskt Sant

P4 samma sétt som matematiska operatorer sa binder dessa konnektiver olika hart.
De som binder starkast &dr de unéra konnektiverna —, V och 3. Déarefter kommer A,
sedan V och till sist —, som binder svagast och #r hogerassociativ. Formeln Va.(P(z) A
-3y.Q(y) — ~(R(y) vV =~S(x) AT(y))) anvénds i figur 2.1 f6r att visa bindning av de
logiska konnektiverna:

Vx
\
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AN -

PN \
P - vV

I
X R A

‘ PN
T
y

<« —O—<

|

S
|
X

Figur 2.1: Syntaxtrdd for formeln Ya.(P(x) A =3y.Q(y) — —~(R(y) V =S(z) A T(y)))

Nedan foljer definitionen av literaler vilket &r formlers atomer.

Definition 3 En literal dr antingen en term, ett predikat eller L. Om ¢ dr en literal,
ar dven —¢ en literal.

Detta dr definitionen av en klausul:

Definition 4 En klausul dr en icke tom mdngd av literaler sammanbundna av disjunk-
tioner.



2.1.3 Predikat

Ett predikat liknar en funktion och bestar av en identifierare samt en lista med argument.
Skillnaden mot en funktion &dr att ett predikat &r en formel och returnerar dérfor ett
boolskt virde, till skillnad fran en funktion som refererar till ett objekt. Ett exempel pa
ett predikat ses nedan:

Yngre(z, John)

Predikatet kommer vara sant om x &r yngre &n John, annars falskt.

2.1.4 Allkvantifiering (V)

En allkvantifiering Va.¢ motsvarar en formel déir alla mojliga virden pa z insatta i
varsitt ¢ binds samman med konjunktioner. Ett exempel pa denna kvantifierare visas
nedan:

Va.(Katt(z) — Djur(z))

Exemplet kan ldsas som att for alla x sadant att = &r en katt, géller det ocksa att x ar
ett djur. I ett system utan allkvantifiering skulle alla mojliga virden pa x som ar katt
behova rédknas upp och sedan bindas samman med konjuktioner.

2.1.5 Existenskvantifering (3)

Om allkvantifiering kan ses som en konjunktion av formler, kan existenskvantifiering
dx.¢ istéllet ses som en disjunktion av formler. For att kvantifieringen ska vara sann
riacker det alltsa med att ¢ &ar sann for ett viarde pa x. Ett exempel visas nedan:

Jx.(Hatt(x) AN Huvud(x, Erik))

Detta uttryck lises: det existerar minst ett x sadant att x &r en hatt och att z &r pa
Eriks huvud.

2.1.6 Logisk och semantisk konsekvens

For logiska system gar det att definiera tva olika relationer déar den ena géller pa det
syntaktiska planet och den andra pa det semantiska. Logisk konsekvens &r ett av de
mest fundamentala koncepten inom filtet logik. Detta skrivs I' H A och tolkas som att
T" &r en méngd av formler och att A symboliskt kan deriveras ur I'. Att Aristoteles dr
dddlig ar en logisk konsekvens av att alla mdanniskor dr dédliga och att Aristoteles dr
en mdnniska.

Semantisk konsekvens skrivs A £ B och betyder att A medfér* B om en tolkning
som gor alla formler i A sanna goér B sann. Skillnaden mot - &r att den hér relationen
géller semantiskt. For att det ska gélla sa krdvs det att alla formler i A &r sanna och
att B ar sann.

2.1.7 Substitution

For att en formel innehallande variabler skall betyda nagot mer konkret, behovs ett sétt
att substituera variabeln mot nagon konkret information. Definitionen for hur denna
substitution skall ga till kriver att bade konceptet med scope samt konceptet med fria
och bundna variabler &r definierade.

4Eng. Entails.



Definition 5 Fér de tva formlerna Vx.¢ och 3x.¢ sa dr scopet for VY och Jx lika med
¢ minus alla subformler Yz.2p och Ax.ap i ¢.

Exempelvis sa &r scope for 3z i Jz.(P(x) V Va.Q(x)) bara P(z).

Definition 6 FEn variabel kallas fri om den inte dr i ett scope som binder den till en
kvantifiering. Motsatsen till en fri variabel dr en bunden variabel.

For att tydligt illustrera konceptet med fria och bundna variabler kan man rita ett
parsetrdd dar Vo och Jdz &r noder med endast ett subtrad och dér dven predikat &r
noder med predikatsymbolen i noden och lika manga subtrid som den har aritet. I figur
2.2 visas ett syntaxtriad for (Vz.P(z) AQ(y)) V (=P (z) — Jy.Q(y)) med information om
variablerna &r fria eller bundna.

\ Jri

bunden fri bunden

\

p y P Q
\
X

Figur 2.2: Syntaxtrdd for (vz.P(z) AQ(y)) V (=P(z) — Jy.Q(v))

Definition 7 Om vy, ..., v, dr variabler och ty,...,t, dr termer, sa kallas en mdingd av
oversittningar® fran fria variabler till termer {t1/ vy, ...,tn/ vn} for en substitution.

Om substitutionen {f(x,y)/x} appliceras pa (Vz.P(z) A Q(y)) V (-P(z) — Jy.Q(y))
erhalls (Vz.P(z) A Q(y)) V (=P(f(z,y)) — Jy.Q(y)), parsetridet visas i figur 2.1.7:

Figur 2.3: Syntaxtrdd for substitutionen {f(z,y)/z}

Substitutioner kan dock leda till otrevliga sidoeffekter. Definitionen nedan l6ser dessa:

Definition 8 Givet en term t, en variabel x och en formel ¢ sa drt fri med avseende
pa x om inget fritt x i ¢ dr i scope for Vy eller Jy for nagon variabel y i t.

5Eng. Mappings.



Ett exempel pa ett fall som definition ovan 16ser dr: Om subtitutionen {f(x)/y} appli-
ceras pa Vx.(P(z) AQ(y)) erhalls en formel dér den insatta termen blir bunden. For att
eliminera denna sidoeffekt behdvs det en definition som specificerar nér en term &r fri
med avseende pa en variabel.

Nedan foljer en algoritm for hur en substitution appliceras pa en formel:

1. Applicera substitutionen rekursivt 6ver samtliga konnektiv i formeln. Om ¢ dr en
substitution sa appliceras den enligt:

[ ]
—~ /T N
: =
Q
R
<
Q

2. Applicera substitutionen pa predikat och funktioner rekursivt éver inparametrarna
enligt:

o P(ty,....tn)0 <= P(t10,...t,0)
o f(t1,....tn)o <= f(t10,....,tn0)

3. Om en fri variabel patréiffas och den finns med i o 6versétts den enligt substitu-
tionen.

4. Inga andra formler eller termer berérs av substitutionen.

2.2 Naturlig deduktion

For att det logiska system som valts for projektet skall bli intressant, behévs det nagon
form av deduktionskalkyl fér att kunna bevisa teorem. Valet som gjorts dr att stu-
dera naturlig deduktion vilket ar ett deduktionssystem som stridvar efter att beskriva
logiskt resonemang pa ett sitt som kdnns naturligt. Med naturligt menas att det skall
vara intuitivt och paminna sa mycket som mojligt om ménskligt resonerande. Systemet
introducerades som ett alternativ till axiombaserade system som exempelvis Principia
Mathematica. Grunden till naturlig deduktion som det &r ként idag lades av Gentzen i
[7]. Prawitz vidareutvecklade det for modal och andra ordningens logik i [21].
En deduktion (eller ett bevis) kan formellt definieras som:

Definition 9 En dndlig sekvens 31, ..., B, av satser kallas for en deduktion av satsen «
fran en samling premisser Y om (3, = a och for alla 1 < i < n sd gdller att §; € >
eller att B; dr resultatet av en inferensregel applicerad pa en eller flera tidigare satser.

Man bérjar alltsa med en samling premisser och applicerar sedan ett antal inferensregler
tills man i slutdndan har hérlett sin slutsats. Man kan vilja att ha ett deduktionssystem
med férre regler &n vad som valts for detta projekt eftersom manga av dem gar att
héarleda med hjélp av de andra. Farre deduktionsregler leder visserligen till langre och
mer svarlista bevis, men eftersom systemet &r mindre &r det ldttare att implementera.
Egenskapen att kunna producera tydliga bevis har prioriterats i detta projekt och darfor
har fler regler inkluderats &n vad som &r absolut nédvéndigt.

Ett séitt att beskriva deduktionsregler #r att ha ett vagritt streck, med ett antal
formler ovanfor strecket och en formel nedanfor. Till h6ger om strecket skrivs namnet



pa den regel som appliceras. Formlerna ovanfor strecket &r de man vill applicera den
angivna regeln pa, och den under strecket dr den resulterande formeln efter att regeln
applicerats. Pa detta sitt kan man pa ett enkelt sitt visualisera bevis genom att bara
bygga vidare uppat. De formler som man vill applicera sin inferensregel pa &r i sin tur
resultatet av tidigare inferenser.

2.2.1 Konjunktion

De forsta regler som skall studeras ér regler for att introducera och eliminera konjunk-
tioner. For att introducera en konjunktion sa behéver man tva formler som man sedan
skriver en konjunktion emellan. Detta skrivs:

Y

PN (2.1)
Elimination av en konjunktion kan goras pa tva olika sétt. Antingen behaller man den
vinstra delformeln (i férhallande till konjunktionen) och utelimnar den hégra eller sa

behaller man den hogra och uteliamnar den vénstra. Dessa tva olika alternativ kallas for
konjunktionselimination 1 respektive 2 och skrivs:

o M e (2:2)

Med hjélp av dessa tva regler dr det mgjligt att bevisa att p A ¢, F p A r. Detta gors
genom att applicera A.; pa forsta premissen och sedan A; pa resultatet och den andra
premissen. Detta visas i figur 2.4.

Figur 2.4: Exempel med elimination och introduktion av konjunktioner.

2.2.2 Implikation

Att introducera en implikation &dr dock inte lika 14tt. Om man vill applicera implika-
tionsintroduktion pa tva formler ¢ och ¥ sa maste man visa att det verkligen gar att
hérleda ¥ ur ¢. Kan man det sa gar det att siga att ¢ — 1. Denna regel skrivs:

9]

b
Y

i

(2.3)

Eliminering av implikation kallas &ven modus ponens, vilken sidger att om man har ¢
och ¢ — 1 sa kan man sluta sig till ¢. Detta ar véldigt intuitivt, ett exempel pa denna
regel dr det klassiska resonemanget:

e Alla ménniskor &r dodliga. Aristoteles &r en ménniska.

o . Aristoteles dr dodlig.

10



Regeln skrivs:
6 oY
(U (2.4)

Genom att anvinda dessa tva regler tillsammans med introduktions- och eliminations-
reglerna for konjunktioner gar det att bevisa att p — (¢ — r) F p A ¢ — r. Detta gors
genom att forst anta att p A g géller och utifran det deducera r. Nir detta dr gjort &r
det bara att applicera —; och beviset &r fullbordat. Detta visas i figur 2.5.

[p A d]
p—(g—r) "p_,
=

Nel

e

[p A q]
q

/\62

€

—
T .

pPAG—T
Figur 2.5: Ezempel med introduktion och elimination av implikationer.

2.2.3 Disjunktion

For introduktion av disjunktion finns det tva olika versioner. Man introducerar en god-
tycklig formel antingen pa hoger eller vinster sida om en disjunktion diar den motsatta
sidan &r en redan existerande formel. Reglerna skrivs som:

$ ¢
ove N g e (2.5)

Elimination av en disjunktion &r mer komplex. Givet ¢ V1 maste man visa att en formel
x &ar deriverbar ur bade ¢ och . Kan man gora detta sa kan man sluta sig till x. Detta
kan kénnas ointuitivt, men om man funderar 6ver vad ¢ V 1) betyder sa kan man inse
att det &r rimligt. Formeln ¢ V ¢ dr sann om antingen ¢ eller ¢ dr sann eller om bada
dr sanna. Om man kan hérleda en formel y fran bade ¢ och ¥ sa maste den gélla i alla
de tre fallen, det vill séiga nir bara ¢ ar sann, eller nér bara 1 &r sann eller nir bada ar
det. Om x géller oberoende av vilken av ¢ eller ¢ som &r sann sa kan man tryggt sluta
sig till att den maste gélla och da kan man eliminera disjunktionen. Regeln skrivs som:

6] (o]

VY X X,
X ° (2.6)
Med hjilp av denna regel gar det att bevisa att pV g - ¢ V p. Beviset gar att hérleda i
fyra steg. Antag p, deducera ¢V p, antag sedan ¢ och deducera g V p. Nér detta ar gjort
ar x i regeln ovan deducerad fran bade p och ¢ vilket gor att det &r mdojligt att applicera
regeln. Beviset visas i figur 2.6:

[p] [q]
pVg qvp ' gvp 1
Ve
qVp

Figur 2.6: Ezempel med introduktion och elimination av disjunktioner.
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2.2.4 Negation

Negationsintroduktion dr #ven den en komplicerad regel. Den paminner om implika-
tionsintroduktion, men istéllet for att hiirleda en godtycklig formel sa ska man kunna
hirleda L. Detta kan motiveras med att —¢ &r definierat som ¢ — L. Man kan &ven
motivera det med foljande resonemang: om —¢ dr sann sa maste ¢ leda till L. Denna
regel skrivs:

9

L
¢
Elimination av en negation sker pa foljande sédtt. Om man i en given kontext har en

formel ¢ och samtidigt dess logiska motsats —¢, sa kan man derivera L. Detta eftersom
de tva aldrig kan vara giltiga samtidigt. Detta skrivs:

6 -
1

%

(2.7)

€

(2.8)

2.2.5 Allkvantifiering

Allkvantifierarelimination innebér att man reducerar den kvantifierade méngden vari-
abler till en specifik term. Om formeln ¢ giiller for alla x, giiller den &dven for termen t,
eftersom ¢ &r en delméngd av alla z. Detta &r givet att ¢ &r fri i ¢. Termen ¢ kan hér ses
som en mer konkret instans av x. Denna regel skrivs:

Vr.¢
o{t/x}

Introduktionen av en allkvantifierare gar till pa foljande siitt: kan man i scopet av en
helt ny variabel xy derivera en formel ¢ som beror av av den nya variabeln, sa kan man
dven anta att formeln giller for alla x. Detta eftersom inga tidigare antaganden gjorts
om z( och den anses vara en helt godtycklig variabel. Giller ¢ for en godtycklig variabel
xo, giller den ocksa for samtliga x. Detta skrivs:

e (2.9)

[zo]

oo/}
Vop T (2.10)

Med hjélp av dessa bada regler gar det att bevisa att Va.(P(z) — Q(z)),Vx.P(z)
Va.Q(z). Detta kan goras genom att vélja en variabel 2y och sedan eliminera allkvanti-
fierarna i premisserna. Sedan dr det bara att applicera modus ponens och erhélla Q(xo),
detta dr da ett bevis for att Q(x) géller for godtyckliga viirden pa x och allkvantifieraren
kan da introduceras. Beviset visas i figur 2.7:

Va.(P(z) — Q(x)) . Va.P(x) .
P(xo) = Q(zo) °  P(ao) _,ee
Q(zo)
Va.Q(x) Ve

Figur 2.7: Exempel med elimination och introduktion av allkvantifierare.
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2.2.6 Existenskvantifiering

Givet en formel ¢ som beror av en term ¢ sa ar det mgjligt att infora en existenskvanti-
fiering, dér x ersétter t. Resonemanget bygger pa att det finns minst ett = sadant att ¢
dr sann, ndmligen termen t. Regeln for detta skrivs :

¢{t/x}
dx.¢

i (2.11)

For att eliminera en existenskvantifiering Jdx.¢p gbr man ett antagande att ¢ giller for
den generella variabeln zy. Ar det sedan majligt att fran antagandet derivera en formel
1, som inte beror av xg, sa gar det att sluta sig till att ¢ giller. Detta &r &nnu ett
exempel pa en regel som kan verka ointuitiv vid en forsta anblick, men som &r rimlig om
man funderar 6ver vad den egentligen siger. Formeln Jx.¢ séger att det finns minst ett
virde pa x sadant att ¢ dr sann. Kan man hérleda en formel ¥ som inte beror pa den
generella variabeln xg, sa géller ¥ oavsett vilket virde eller varden pa x som gor att ¢
ar sann. Denna regel skrivs:
(oo /a}]

Jx.¢ P 5

0 e (2.12)
Med hjélp av dessa tva regler gar det att bevisa att Vz.(P(z) — Q(x)),3z.P(z) +
Jz.Q(x). For att bevisa detta antar man att P(x) giller fér ett godtyckligt viirde zg
pa x. Nista steg dr att eliminera allkvantifieraren i den forsta premissen och det &r
sedan mojligt att applicera modus ponens och da erhalla Q(zo). I och med att Q(z)
géller for ett viarde zo pa x sa ar det mojligt att introducera en existenskvantifierare
och diarmed dr J2.Q(z) deducerat fran P(x){xzo/x} vilket gor det mojligt att applicera
existenskvantifierarelimination. Beviset visas i figur 2.8:

Va.(P(z) — Q(z))
[P(z0)] P(z9) = Q(z0)
Q(zo) Tz
Jdz.P(z) Jz.Q(x) Eixl
Jz.Q(x) ©

Vo,

E

Figur 2.8: Exempel med introduktion och elimination av existenskvantifierare.

2.2.7 Absurdhet

Eftersom L &r absurdheten sa kan man hérleda allt ur den. Detta skrivs som:

1
@ Le (2.13)

2.2.8 Motsigelsebevis

En véldigt anvindbar regel dr den f6r motségelsebevis (lat. reducio ad absurdum). Denna
regel ar sjdlva kérnan i bevismetoderna resolution och semantisk tableau. Det finns
valdigt manga bevis som bygger pa denna regel, bland annat Euklides vilkdnda bevis

13



att det finns odndligt manga primtal®. Denna regel skrivs enligt:

[=¢]

1
¢ BAA (2.14)

2.2.9 Modus Tollens

En regel som paminner vildigt mycket om modus ponens &r modus tollens, den séger
att om man har -1 och ¢ — 1 sa giller —¢. Ett exempel pa denna regel &r:

e Alla ménniskor dr dodliga. En sten dr inte dodlig.
e En sten dr inte en ménniska.
Detta skrivs:

Y P — )
—¢  MT (2.15)

2.2.10 Dubbelnegation

Tva andra intuitiva regler &dr introduktion och elimination av dubbelnegation. Dessa
skrivs:

¢ .
-—¢ (2.16)
¢ .

) c (2.17)

2.2.11 Lagen om det uteslutna tredje

Den sista regeln i var deduktionskalkyl #r lagen om det uteslutna tredje’. Ett exempel
pa denna regel dr Shakespeares ” Att vara eller icke vara” som formaliseras ¢V —¢. Detta
dr en uppenbar tautologi och man behéver alltsa inte ha nagot underlag f6r att kunna
hérleda det. Regeln skrivs:

ov—g LEM (2.18)

Intuitionistisk logik dr ett exempel pa ett logiskt system dér varken elimination av
dubbelnegation, lagen om det uteslutna tredje eller motségelsebevis géller. Anledning &r
att intuitionistisk logik har sina rétter i intuitionismen som séger att objekt maste kunna
konstrueras mentalt innan det gar att resonera om dem. Detta gar emot den traditionella
logiken som séger att existensen av ett objekt kan bevisas genom att motbevisa dess icke-
existens. Detta dr anledningen till att motségelsebevis inte accepteras av intuitionistisk
logik. Av detta foljer att bevis i intuitionistisk logik endast kan anses giltiga om det
finns en metod som kan skapa de objekt beviset behandlar.

Lagen om det uteslutna tredje inkluderas inte i den intuitionistiska logiken eftersom
det gar att konstruera ett matematiskt pastaende som varken kan bevisas eller motbe-
visas.

Elimination av dubbelnegation tillats ej i intuitionistisk logik eftersom synen pa
negation hér skiljer sig fran traditionell logik, som séger att negationen av ett sant
pastaende innebir att detta dr falskt. I den intuitionistiska logiken ses detta som ett

6Beviset aterfinnes i de flesta bocker om elementér talteori eller exempelvis i [22].
"Eng. Law of the excluded middle.
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bevis av att pastaendet inte gar att bevisa. Om ett pastaende P gar att bevisa, sa ar
det omojligt att bevisa att det inte gar att bevisa. Dock sa innebér avsaknaden av ett
bevis for att det inte finns nagot bevis for P, att det faktiskt finns ett bevis for P och
déarfor dr P ett starkare pastaende dn ——P.

2.3 Normalformer

I detta avsnitt presenteras tva olika normalformer, ndmligen disjunktiv- och konjunktiv
normalform. Alla formler i férsta ordningens logik kan konverteras till en ekvivalent
formel pa konjunktiv- eller disjunktiv normalform.

En formel &r i konjunktiv normalform omm den &r en konjunktion av klausuler.
Exempelvis dr —¢ A (¢ V ¢) pa konjunktiv normalform, men (—¢ A ¢)) V ¢ dr det in-
te. Konjunktiv normalform #r nddvéndig for inferensregeln resolution, som bara kan
appliceras pa klausuler.

En formel &r i disjunktiv normalform omm den &r en disjunktion av konjunktiva
klausuler. En konjunktiv klausul d&r en méngd literaler ssmmankopplade med konjunk-
tioner. Exempelvis &r (=g A 1) V ¢ pa disjunktiv normalform, men —¢ A (¢ V @) ér
inte det. Disjunktiv normalform &r lamplig fér semantisk tableau eftersom disjunktio-
ner hamnar pa toppniva i formler och darmed blir fiarre till antalet. Detta kommer att
forklaras ndrmare senare i rapporten.

Algoritmen for att konvertera en godtycklig formel av forsta ordningens logik till
dessa normalformer beskrivs nedan:

1. Eliminera implikationer genom att byta ut ¢ — ¥ mot —¢ V 9.

2. Flytta negationer inat i formeln genom att applicera De Morgans lagar:

e (pVY) = —pANW
e (¢NY) = VY
o Vr.¢p <— dr.—¢p

e Jxr.¢p &< Vz.m¢

¢ ) = ¢

Till exempel blir —(=¢ A 1)) konverterat till ¢ V —p.

3. Standardisera variabelnamn foér att slippa tvetydigheter nir man vid ett senare
steg eliminerar kvantifierare. I formeln Vz.P(z) V 3x.Q(z) representerar de tva
kvantifierade variablerna olika x. For att komma ifran detta problem kan formeln
skrivas om till Vz.P(z) V 3y.Q(y).

4. Flytta alla kvantifierare langst till vénster i formeln, V. P(z)V3y.Q(y) blir Va.3y.(P(z)V
Q(y)). Eftersom alla variabler nu dr standardiserade sa finns det inga variabler med
samma namn, vilket medfor att denna transformering kan utféras. Om variablerna
inte hade varit standardiserade sa hade varje fri variabel med samma namn som
en bunden, efter transformering blivit bunden och formelns logiska innebérd hade
da forandrats.

5. Eliminera existenskvantifierare genom att byta ut alla variabler som de kvantifierar
mot skolemkonstanter eller skolemfunktioner. En skolemfunktion &r en funktion
f(zx1,...,x,) dir funktionsymbolen f inte redan férekommer i formeln och variab-
lerna x1, ..., x, ir de variabler som &r allkvantifierade. En skolemkonstant &r en
skolemfunktion med noll aritet.
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6. Eftersom alla allkvantifierare nu ligger lingst till vénster i formeln och de ex-
istenskvantifierade variablerna har ersatts med skolemkonstanter eller skolemfunk-
tioner, dr det sikert att anta att alla de kvarvarande variablerna i formeln &r
allkvantifierade. Man kan darfor forkasta de kvarstaende kvantifieringarna.

7. For konvertering till konjunktiv normalform utfor steg (a), for disjunktiv normal-
form utfor steg (b).

(a) Distribuera disjunktioner éver konjunktioner. (¢ A1)V ¢ blir (¢pV ) A (¥ V )
och ¢V (¥ A ) blir (¢ V) A (P V ).

(b) Distribuera konjunktioner éver disjunktioner. (¢V 1) A blir (¢ Ap)V (Y Ay)
och ¢ A (¢ V) blir (¢ AP) V (A ¢).

2.4 Unifiering

Denna metod utvecklades av Robinson i [23] for att anvéindas inom automatisk teorem-
bevisning. Unifiering utnyttjas frekvent inom logiska programsprak bland annat for att
hantera instansiering av variabler. Den problematik som unifiering 16ser &r att avgora
om det for en méngd formler finns en substitution som far dem att se likadana ut.

Definition 10 En substitution o = {t1/v1, ..., tn/ vn} kallas for en unifierare for mangden
av formler {E, ..., Ey} om Eio0 = Eyo = ... = Ep0.

Om detta leder till ndgon motségelse dr formlerna inte unifierbara och ett negativt
resultat returneras. Om formlerna déremot dr unifierbara returneras en unifierare. For
alla méngder av formler sa finns det en unifierare som &r mer generell &n alla andra,
denna kallas for den mest generella unifieraren.

Definition 11 FEn substitution o kallas den mest generella unifieraren om det inte finns
nagot par av substitutioner (o', 7) sadana att o' = oT.

For de tva substitutionerna oy = {f(g(a, h(x)))/z, g(h(x), b)/y, h(z)/z} och
oo = {f(g(x, y))/z, g(z, b)/y} &r og mer generell én oy eftersom det finns en
substitution 7 = {a/z, h(z)/y, h(x)/z} sadan att o1 = oa7.

Ett exempel pa formler som inte gar att unifiera dr P(x, 1) och P(2, z). Jamfor
man den forsta variabeln i de bada formlerna far man unifieraren {2/xz}. Nir man
sedan gar vidare till den andra variabeln skall man ldgga till {1/2} till unifieraren, men
eftersom detta leder till en motségelse sa kan det konstateras att det inte gar att unifiera
formlerna.

Ett specialfall som &dr vért att uppmérksamma intraffar nar man férscker unifie-
ra en formel f med en variabel z, dir f innehaller x. Unifieringsalgoritmen kommer
da att fastna i en oéndlig loop. Det blir en cyklisk struktur som bara ar giltig om f
ar identitetsfunktionen. For att implementera en komplett unifieringsalgoritm maste
det testas om f innehaller z, det enda problemet med detta &r att unifieringen blir
mindre effektiv, ndrmare bestdmt gar komplexiteten fran O(min(size(t1), size(ta))) till
O(max(size(ty), size(tz))). Detta test kallas kontroll av variabelférekomst®.

8Eng. Occurence check.
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2.5 Metalogik

Metalogik eller metateori for logik &r studiet av egenskaper som logiska teorier och sy-
stem har. Nedan definieras nagra relevanta egenskaper for logiska system, dessa kopplas
sedan till predikatlogik.

Definition 12 FEtt logiskt system kallas konsistent omm det inte finns nagra formler
sadana att ¢1, ..., ¢, F Y samtidigt som ¢1, ..., ¢ F

Konsistens &r en intuitiv, vildigt viktig egenskap, om man har bevisat ¢ sa bor det inte
vara mojligt att bevisa —). I ett system med motséigelser gar allt att bevisa (se formel
2.13).

Definition 13 Om det med hjilp av systemets inferensregler enbart gar att hitta bevis
for semantiskt sanna foljder siges systemet vara sunt. Med andra ord ¢1, ..., op F Y =

D1y ey G E Y

Dess signifikans inses snabbt genom att forestélla sig meningslosheten hos ett inferens-
system dér det gar att finna bevis for falska pastaenden.

Definition 14 FEltt inferenssystem sdges vara fullstindigt om det for varje semantiskt
giltig foljd existerar ett bevis ¢1, ..., 0n E Y = @1, ..., 0n F U.

I teorier eller system som har denna egenskap finns det bevis for samtliga teorem,
vilket kan tyckas betryggande. Detta bevisades for predikatlogiken av Godel i hans
fullstéindighetsteorem|[8]. Problemet dr att sa fort en teori blir tillréickligt komplicerad
kommer detta inte nodvéndigtvis gilla. Om en konsistent teori I' uppfyller kravet att
den kan uttrycka och bevisa enkla® aritmetiska sanningar, samtidigt som den kan ut-
trycka vissa sanningar om teorin sjalv kan man konstruera ett pastaende som dr sant i I'
men obevisbart. Aven detta resultat bevisades av Godel i [9] dér dven de exakta kraven
pa I presenteras. Konsekvenser som detta innebér for matematiken dr att om man vill
halla den konsistent far man helt enkelt leva med att vissa saker inte gar att bevisa.

Definition 15 Ett problem sdges vara avgérbart om det existerar en metod som pa ett
andligt antal berdkningssteg kan sluta sig till ett svar.

Predikatlogiken har visats vara oavgorbar vilket innebér att en sokning efter ett bevis
kan i teorin halla pa i all odndlighet. Detta kan visas genom att exempelvis reducera
problemet till en instans av ”Post correspondence problem” vilket gors i [13].

2.6 Automatisk teorembevisning

Som det ndmns i inledningen sa finns det manga motiveringar till att automatisera
bevisningen av teorem. Detta projekt fokuserar pa tre olika metoder. Den forsta ar
resolution, vilken bygger pa att man applicerar en inferensregel med samma namn dnda
tills man hérlett L vilket leder till ett motsédgelsebevis. Nédsta metod dr tableau. Denna
unyttjar ocksa motsigelsebevis for att derivera fram slutsatsen. Tableau arbetar sig fram
genom att bryta isér konjunktioner och forgrena sékningen vid varje disjunktion. Detta
fortsétter tills alla forgreningar leder fram till L med vilket man kan hérleda slutsatsen.
Den tredje och sista metoden kallas for narrowing som ar en generell metod for att 16sa
ekvationer i omskrivningssytem.

9 Addition och multiplikation 6ver naturliga tal.
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2.6.1 Resolution

Denna metod introducerades 1965 av Robinson i [23] och kan delas upp i tva delar. Den
forsta delen &r en inferensregel som hérefter kommer att benimnas ”resolutionregeln”.
Den andra delen kommer benimnas ”resolution” och syftar till en teknik for att bevisa
teorem.

For att kunna applicera resolution krévs det att indata &r i konjunktiv normal-
form (se avsnitt 2.3). Inferensregeln appliceras pa tva klausuler vilka har minst ett par
komplementira literaler. Klausulerna knyts samman av en disjunktion, dubbletter av
literaler tas bort och sedan cancelleras de komplementéra literalerna. Detta eftersom en
disjunktion av komplementira literaler, t.ex. pV —p, dr en tautologi (vilket ldtt inses om
man studerar dess sanningsvirdestabell). Resultatet dr en klausul som bara innehaller
unika literaler. Ar fallet sadant att samtliga literaler efter borttagningen av dubblet-
ter ingar i ett komplementért par, har man deriverat 1. Nedan visas definitionen av
resolutionregeln, dér literalerna a; och b; &r varandras komplement:

al\/...\/ai\/...\/an, bl\/...\/bj\/...\/bm
arV..Va—1Va1V..Va,V bV ... \/bj_l \/bj+1 V...Vby

(2.19)

Nedan foljer ett enklare exempel av resolutionregeln samt en tillhérande forklaring:

aVb, —aVc
bve

De tva klausulerna har ett par komplementéra literaler, ndmligen a och —a. Om a &r
sann, sa &ar —a falsk och dérfor maste dven ¢ vara sann. Om a déremot &r falsk, sa maste
b vara sann. Av dessa tva slutsatser kan man komma fram till att, oberoende av virdet
pa a, sa maste antingen b eller ¢ vara sann, dérav bV c.

Den andra delen dr, som ndmnt ovan, en teknik for att bevisa teorem som bygger pa
ett motségelsebevis. Premisser samt den negerade slutsatsen konverteras till konjunktiv
normalform och dérefter bryts samtliga konjunktioner upp. Resolutionregeln appliceras
sedan gang pa gang tills att L &r deriverad.

For att tydligt illustrera hur resolution fungerar foljer ett exempel. Uppgiften for
teorembevisaren ar att bevisa att:

(2.20)

(—=pV—gVr)A(-pVqg) Aptr (2.21)

Premissen ér redan i konjunktiv normalform sa det behdvs inte goras nagon konvertering.
Det forsta steget dr da att bryta upp formeln i klausuler och ligga in negationen av
slutsatsen, —r, i klausullistan. Denna blir da:

[~pV =gV r,=pVqp,r]
Resolutionregeln appliceras sedan mellan férsta och andra formeln vilket ger:
[=pV =gV r,=pVq,p,—r,pVr]

Nésta steg ar att forst applicera resolutionregeln mellan p och —p V r vilket ger bara r.
Dérefter ar att det bara att applicera regeln mellan r och —r vilket ger:he

[-pV —qVr,—pVq,p,—r,—pVrr, L]

Absurdheten &r da deducerad och man har alltsa funnit en motséigelse, vilket betyder
att r dr bevisad fran (-pV —gV r) A (-p V q) A p.
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2.6.2 Semantisk tableau

For att bevisa en formel ¢ med tableau, antas —¢, varpa forsok att derivera en motséigelse
gors. Motségelsen produceras genom att omvandla resultatet till ett tableautrdd sa som
0. Det bestar forst bara av en gren men for varje disjunktion i 8 som behandlas férgrenas
tradet i tva nya grenar. Uppgiften att producera en motségelse for hela tridet kallas for
att stinga tradet. Att stinga ett trad gér man genom att stdnga tradets grenar.

Definition 16 En gren dar stingd ndr ¢ och —¢, eller L existerar i grenen.

Expansionen av tableautridet sker genom att applicera olika regler pa tridets grenar. En
av dessa regler dr redan definierad och det &r regeln for elimination av dubbelnegation,
de andra dr dock inte definierade och visas nedan i tabell 2.2 och 2.3.

Tabell 2.2: Reglerna for expansion av a- och B-formler.

Konjunktiv Disjunktiv
o ap o B B1 B
TNy .y | o(xAy) | ~r y
“(@vy) |~ oy | xVy Ty
-y |z y| z—oy |y

Dessa regler later oss omvandla ett tableautrdd med logiska formler som noder till ett
nytt tableautrid, expanderat enligt reglerna. Arbetséattet &r enligt foljande: vilj en gren
# och en formel ¢ som inte &r en literal och utfor sedan:

e Om ¢ ar -~z sa lagg till noden z till i 6.
e Om ¢ ar en a-formel skall oy och as laggas till som noder i 6.

e Om ¢ ar en [-formel skall det skapas tva nya barnnoder till den sista noden med
(1 och s, det vill sdga tva nya grenar.

P4 samma sitt som regler delas upp i konjunktiva (a-formler) och disjunktiva (S-
formler) regler, kan det for predikatlogik goras ytterligare en uppdelning mellan all-
kvantifierande och existenskvantifierande formler v och 4.

Tabell 2.3: Regler for utveckling av - och d-formler.
’ Universell \ Existensiell ‘
g V(t) g o(t)
Ve.® | Oft/x} Jr.® | P{t/x}
—-Jx.® | ~®{t/x} | Va.® | ~d{t/x}

Tabellen ovan visar hur «-formler och d-formler anviinds. Det &r reglerna for y-formler
som gor att de flesta implementationer av tableau dr langsammare dn implementationer
av resolution. I tableau ricker det for alla andra regler att appliceras en gang per formel
i tradet. Dessa regler kan dock behdva anvindas flera ganger pa samma formel och det
gar inte att i forvig att veta exakt hur manga ganger detta kommer att behova ske.

Nér de historiskt sett forsta implementeringarna av tableau gjordes anvéndes regeln
en gang for varje stingd term [5], men eftersom detta antal kan bli odndligt [5] dr det
ingen effektiv strategi. Ett forsok att 16sa problemet som anviinds i manga nyare imple-
menteringar #r anvindandet av unifiering och erséittandet av reglerna for y-formlerna
med en regel:

v(z)
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Denna regel gor en substution pa samma vis som forut men istéllet for att infora ~(t)
dér ¢ &r en konstant, infors () med den nya fria variabeln x. Virdet pa = sétts senare
med hjilp av unifiering till nagot som har mojlighet att stdnga en gren.

For att béttre visa hur tableau jobbar sig fram for att finna en l6sning foljer ett
exempel. Uppgiften for teorembevisaren ér att bevisa formel 2.21 fran stycket ovan om
resolution. Det forsta steget dr att anta den negerade slutsatsen, —r, och ligga den till
premisserna med hjélp av en konjunktion:

(—pV (=gVr)A(=pVg ApA-rT

Figur 2.9 visar den foljande expansionen av tableutridet:

ﬂpv(ﬂq‘Vr)? (a)
(=pVa)Ap, (b)

ﬁrv‘ (C)
o ‘(d)
—pVa, (e)
-b, (f) ~qVr, (g)
stangd
—q, (h) r, (k)
stangd
-p, (1) q, (J)

stingd stangd
Figur 2.9: Exempel pa tableautrid

Noderna (d) och (e) bildas fran konjunktionen i (b) som bryts upp genom applicerande
av reglerna for a-formler fran tabell 2.2. Da det &nnu inte finns nagon motségelse i tridet,
borjar tableau anvénda reglerna for -formler fran samma tabell for att expandera det
till flera grenar. Den viinstra grenen gar att stinga genom motségelsen (f) och (d). Den
hogra grenen maste dock expanderas i ytterligare grenar innan tradet kan stdngas i sin
helhet. Detta kan goras med hjilp av motséigelser i (d) och (i), (h) och (j) samt (c) och

(k).

2.6.3 Narrowing

Narrowing dr en samling berdkningsstrategier for att reducera okénda termer i om-
skrivingssystem!?. Narrowing anviinds idag som en del av kiirnan i sa kallade funktionella
logikprogrammeringssprak, exempelvis Curry[11] och 7OY[4] m.fl.[10]. Lite informellt
kan narrowing sidgas unifiera vinsterledet i en omskrivningsrege 1 med en term for att
sedan applicera regeln pa den instansierade termen. Vad narrowing egentligen r, kan
lattast askadliggoras med ett exempel pa en sékning efter tilldelningar till okénda delar
av en ekvation i ett rekursivt definierat talsystem.

10Eng. Rewrite system.

20



Betrakta ett talsystem likt de naturliga talen. Det finns ett tal 0. For varje tal n finns
ett efterfoljande tal s(n). I ett sdidant system blir exempelvis talet 3 definierat rekursivt
genom s(s(s(0))). Likhet foljer genom omskrivningsreglerna:

0=0— sant
0=s(z) — falskt
s(z) =0 — falskt
s(x) =s(y) —z =y

I denna miljo &r det mojligt att infora operatorn for addition rekursivt genom:

0+n—n
m+ s(n) — s(m+n)

Vi kan i detta systemet forsoka 16sa en ekvationen nedan med en serie omskrivningar:
5(0)4+7?0 = s(s(0))

Man kan borja med att applicera regel 2 for addition s(0)+7?o — s(0+7¢) pa vénsterledet
for att fa:
5(0+70) = s(s(0))

Detta kallar man for reduceringssteg. Vidare kan man anviinda likhetsregel 4 s(0+79) =
5(s(0)) — 04?9 = s(0) och sedan applicera den forsta regeln for addition 04?9 —?¢ pa
vansterledet. Kvar far vi da ekvationen:

?0 = S(O)
Hir dr det mojligt att instansiera 7 — s(?1), vilket ger:
s(71) = s(0)

Ytterligare en likhetsreduktion och den sista okénda termen kan tilldelas 7, — 0 for att
16sa ekvationen. Losningen av ekvationen ovan presenterade en mojlig kombination av de
steg som krivdes for en 16sning. Hur manga omskrivningsregler som egentligen anvindes
innan I6sningen kunde finnas beror pa vilken narrowingstrategi som anvénds. En av de
(sdmre) strategierna r att forsoka unifiera varje omskrivningsregel med varje oinstansi-
erad term vid varje narrowingsteg, vilket resulterar i en uttémmande stkning. De van-
ligaste strategierna man anvénder idag kan samlas under namnen lat eller nédvéandig
narrowing'! vilka férsoker att enbart géra steg som &r oundvikliga. Dessa och andra
behandlas 6versiktligt tillsammans med deras egenskaper i [1]. Nagot mer formellt kan
man se narrowing som ett verktyg som i omskrivningssystem kan 16sa ekvationer ge-
nom att beridkna unifierare med avseende pa dess ekvationssteori. Den forscker uppna
sant och skriver om termen tills detta uppnatts eller termen ir si avsmalnad!? att alla
regler evaluerar till falskt. Nodvandig narrowing visar sig ha goda resultat for system
baserade pa definitionstrad!3[2].

Inspirationen till att konstruera en bevisletare baserad pa narrowing kommer fran
[17], ddr en bevisverifierare appliceras pa en lat nédvéindig narrowingimplementation for
att hitta bevis av hogre ordningen. Implementationen gjordes i Haskell och utnyttjar en
del finurliga tricks for att undvika att generera egna definitionstrdd genom insikt i hur
GHC'™ fungerar internt.

1 Eng. Needed narrowing.

12Eng. Fully narrowed.

13Eng. Definitional tree.

M The Glasgow Haskell Compiler.
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Latheten kommer vl till pass om narrowing skulle stéllas infér en situation likt:
70Ny

Om den hér forsoker instansiera 7 — falskt behover vi inte ens evaluera resten eftersom
falsktA?y — falskt oavsett vad 71 antar. Detta gor att den delen av 16sningstrédet
kan kapas bort och ddrmed minska sokrymden. Detta gor att sokningen i praktiken
blir effektivare &n en uttommande stkning samtidigt som alla korrekta losningar kan
beréknas.

Vi kan omformulera problemet att hitta bevis for en f6ljd av formler i termer av
omskrivning genom att lata slutsatsformeln vara fix och bevisstrukuren det okédnda ob-
jektet. I detta fall kan vi latt skédra bort delar av s6krymden for varje introduktionsregel
som inte kan appliceras pa den yttersta konnektiven. En bevisverifierare av denna formen
kan till exempel se ut nagot liknande:

check :: Proof -> Formula -> Bool

Vi later formeln vandra uppat rekursivt genom verifieraren och manipulerar enbart den
baserat pa de inferensregler som narrowing ger oss. Nedan foljer ett exempel pa hur
check kan implementeras:

check p f = case p of
AndI a b -> case f of
And x y -> (check a x) && (check b y)
-> False
0rI1 a -> case f of
Or x y -> check a x
-> False

[

Idén att anvinda narrowing for bevisletning #r dock inte helt ny, det uppticktes
nidmligen for att anviindas till detta dndamal i [26], fast pa ett annat sdtt &n det som
presenterats hir. For att en narrowingstrategi skall bli effektiv!®, sund och fullstéindig
kréivs oftast att man gor begransningar pa hur sdkningen sker och vilka omskrivningar
man tillater.

15Minimalt antal steg som inte leder till en 16sning.
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Kapitel 3

Implementation

Detta kapitel beskriver projektets upplagg och vilka val som gjorts under implemente-
ringen. Forst kommer en 6versiktlig presentation av hela projektet med ett moduldia-
gram. Sedan beskrivs hur vi valt att representera predikatlogik och naturlig deduktion
som abstrakta datatyper i Haskell. Avslutningsvis beskrivs hur bevis verifieras och de
val som gjorts under implementeringen av teorembevisarna.

3.1 Oversiktligt om implementation

Detta avsnitt kommer ga igenom de olika modulerna i implementationen, hur de samar-
betar med varandra samt viktiga datatyper som anvénds i stor utstriackning. De moduler
som nidmns nedan kommer forklaras senare i detta kapitel.

Hela applikationen byggs pa grammatiken, de datatyper som genererats av BNFC
fran den abstrakta syntaxen. Dessa datatyper inkluderar den interna representationen
for formler, teorem, bevis och referenser till inferensregler. Det finns tre representationer
for bevis i applikationen: en generell representation som genereras av BNFC och tva
andra som &r mer specialiserade, en for bevis pa liststruktur samt en for tradstruktur.
Ett generellt bevis fas néir text tolkas av BNFC. Dessa bryts sedan ner sa att limpliga
parametrar kan skickas till de olika teorembevisarna alternativt bevisverifieraren. Det
bestar av en lista med premisser, ett antal inferensregler samt en slutsats.

Ett bevis pa liststruktur innehéaller en lista med triplar som var och en bestar av ett
referensnummer, en formel och en applicerad inferensregel. Strukturen dr starkt influerad
av exemplen i [13]. T tabell 3.1 ses ett enkelt exempel av ett sadant bevis:

Tabell 3.1: Bevis pa listform

1 »p Premiss
2 —=(gAr) Premiss
3 —p it 1

4 qgAr e 2

5 T Ne2 4

6 ——pATr Ni 3,5

Ett bevis pa tradstruktur dr rekursivt uppbyggt och varje niva &r ett bevis av en formel
givet en inferensregel samt ytterligare ett bevis for varje deltridd som inferensregeln
behover for att derivera den givna formeln. Figur 3.1 visar samma bevis som i tabell
3.1, men pa tradstruktur:
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~—(gAr)
P AN
TP AT

Ne2

g

Figur 3.1: Bevis pa tridform

Det har implementerats en modul som kan konvertera en godtycklig formel till en av tva
normalformer. Antingen konjunktiv- eller disjunktiv normalform. Denna modul anvénds
bade av resolution och tableau. I implementationen av denna modul sa byter de stan-
dardiserade variablerna namn till {zo,z1, ...} och skolemkonstanterna och skolemfunk-
tionerna heter {fo, f1,..-}.

Ytterligare en modul som flitigt anvinds av de tva ovanndmnda teorembevisarna
ar den for unifiering. Denna modul behandlar endast literaler, eftersom det inte finns
behov i applikationen av att unifiera formler pa en hogre niva.

Resolution genererar ett generellt bevis medan tableau och narrowing genererar bevis
pa tradstruktur.

Bevisverifieraren tar antingen in ett bevis i den generella strukturen eller ett bevis i
liststrukturen. Den kan &ven ta in ett bevis pa den generella strukturen och konvertera
detta till ett bevis pa liststruktur.

3.1.1 Moduldiagram

For att lattare se relationerna mellan delarna i applikationen visas ett moduldiagram i
figur 3.2. Som detta indikerar har den tre huvuddelar, ndmligen en for bevisverifiering,
en for teorembevisare och en for grafisk representation av bevis.

TProof _
Visualization Modul far representation av bevis pa tradform

N Automated Reasonin
PrettyPrint g LProof
Modul for visualisering av bevis pa listform och Modul far att verifiera att ett
trad form. bevis pj listform &r korrekt
\/
™
Provers
Proof
Modui for att konvertera bevis fran TProof til LProof
och vice versa.
Tableau
Modul for att bevisa teorem med Semantisk tableau.
Grammar
—D Modul for vr abstrakta syntax och tillhérande
datatyper.

Narrowing ﬂ
Modul for att bevisa teorem med Narrowing.

Normalform
Modul for att konvertera formler
Resolution Unification till konjunktiv- och disjunktiv
Modul for att bevisa teorem med Resolution. 4 Modul far att unifiera fl«’&- formier. normalform.

Figur 3.2: Moduldiagram for projektet.
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3.2 Abstrakt syntax

For detta projekt har det tagits fram en abstrakt syntax med hjilp av BNFCJ[20], som
ocksa bygger de datatyper for formler, och till viss utstrickning bevis och inferensregler
som anvénds i applikationen. Detta innebér att bevis och teorem skrivna pa denna
syntax kan ateranvindas om och om igen. Detta har visat sig vara en mycket virdefull
egenskap vid testning under utvecklingsfasen. Det innebér ocksa att anvidndare inte
behover sétta sig in i den interna representationen av bevis utan istéllet kan skriva dem
pa den abstrakta syntaxen. Bevisen och teoremen blir mer littlédsliga, gar snabbare att
skriva och blir mer intuitionistiska eftersom syntaxen paminner om den notation som
anvands i avsnittet om predikatlogik.

I det hér avsnittet visas och forklaras de grammatiska regler som ingar i den abstrakta
syntaxen. Forklaringen kommer borja pa en hog niva for att ge en bra 6verblick och
sedan arbeta sig nedat. Det kommer sedan visas konkreta exempel pa hur bevis och
teorem skrivs i denna syntax och &ven hur ett syntaxtriad® av ett bevis ser ut. For att ta
del av detta avsnitt sa bor ldsaren tagit del av avsnitten om predikatlogik och naturlig
deduktion.

3.2.1 Bevis

Ett bevis &r en lista av premisser, ett antal inferensregler applicerade pa premisserna
samt en slutsats. Nedan visas definitionen av ett bevis pa den abstrakta syntaxen:

PProof. Proof ::= [Formula)” ==> " Rule” | — 7 Formula;

Ovan representeras premisserna av en lista med formler separerad med semikolon. Det
finns naturligtvis en regel som sédger beskriver att det skall vara semikolon som separa-
tor, men eftersom den &ar trivial tas den inte uppe i detta dokument. Inferensreglerna
representeras av datatypen, "Rule”. Notationen séger att detta element inte dr en lista,
till skillnad fran premisserna, vilket tyder pa att detta &r en rekursiv datatyp. En ”Ru-
le” innehaller en inferensregel och d&nnu en "Rule”. Bevisets slutsats representeras av en
formel. Tecknen som separerar dessa element &r till for BNFC vid 6versiattningen till de
interna datatyperna och skickas inte vidare till applikationen.

Denna datatyp &r dven den som anvénds for att representera ett teorem - man
uteldmnar bara inferensreglerna. Detta pa grund av en begriansning i BNFC som medfor
att man inte kan ha flera s.k. "entry points” i grammatiken. Detta innebér i korthet att
det inte far finnas tvetydigheter i vad som ska tolkas och Oversiittas. Skickar man in
ett teorem till bevisverifieraren, sa kommer den att tolka det som ett ogiltigt bevis
pa grund av avsaknaden av inferensregler. Skickar man in ett bevis till nagon av vara
teoremsbevisare, kommer den att forkasta inferensreglerna och forséka bevisa det pa
egen hand.

3.2.2 Formler

Nedan visas de definitioner fér formlerna som bestar av en bindr operator som binder
ihop tva formler:

Impl. Formula ::= Formula” — > 7 Formulal;

Or. Formulal = Formulal” |” Formula2;

And. Formula2 ::= Formula2” &” Formula3;

1Eng. Parse tree.
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Definitionerna ovan siger att en formel kan vara tva formler som binds samman av
antingen en implikation, konjunktion eller disjunktion. Siffrorna efter ordet ”Formula”
anger hur hart operatorn binder. Ju 13sare bindning, desto léigre nummer (inget nummer
kan tolkas som siffran 0).

Hér foljer de definitioner som beskriver kvantifieringar 6ver en viss formel:

All. Formula3 == "1"7"[? TIdent”]”” :” Formula3;

Exist. Formula3 ::= "7 7" TIdent”]”” :” Formula3;

Definitionerna séger att en formel kan vara en allkvantifiering eller en existenskvantifie-
ring av en given variabel 6ver en formel. Observera att hakparenteser inom citationstec-
ken och ”vanliga” hakparenteser inte betyder samma sak. Vanliga hakparenteser tyder
pa att elementet dr en lista, medan hakparenteser inom citationstecken &r till f6r BNFC
vid 6versdttningen till de interna datatyperna.

Nedan foljer definitionen av en negation:

2

Neg. Formula3 ::= 7" ~7” Formula3;

Definitionen séger helt enkelt att en formel kan vara en negation av en annan formel.
Till sist visas definitionerna av de olika atomerna i datatypen formel:

Pred. Formulad ::= Pldent” (" [Term]”)”;

Bottom. Formula4 ::=

9 » .
==

Term. Formula4 ::= Term;

Definitionerna ovan séager att en formel kan vara ett predikat, L eller en term. Ett predi-
kat bestar av en identifierare samt en kommaseparerad lista med termer som argument,
omslutna av ett par parenteser.

3.2.3 Termer

Det finns tre olika varianter av termer: variabler, funktioner och konstanter. Dessa visas
nedan:

Var.Term = TIdent;

Const. Term ::= TIdent”(””)";
Func.Term == TIdent” (" [Term]”)” ;

En variabel &r en enkel identifierare, en konstant dr en funktion som inte tar emot nagra
argument och en funktion &r en identifierare med en kommaseparerad lista av termer
som argument, omslutna av ett par parenteser.

3.2.4 Identifierare

Det finns tva olika typer av identifierare i den abstrakta syntaxen:

token T Ident (lower (letter | digit|’ )x);
token PIdent (upper (letter | digit|' ' )*);

En "TlIdent” &r en godtycklig sekvens av sma bokstéver, siffror och understreck. Den-
na identifierare anvénds till variabler, funktioner, konstanter och kvantifieringar. En
"Pldent” dr en godtycklig sekvens av stora bokstéver, siffror och understreck. Denna
identifierare anvidnds endast till predikat. Tva begrédnsningar som BNFC ldgger pa de
bada &r att identifierarna maste borja pa en bokstav, samt att sekvensen av tecken maste
vara minst ett tecken lang.
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3.2.5 Inferensregler

Det finns fyra olika typer av inferensregler: antaganden, introduktionsregler, elimina-
tionsregler samt deriverade regler som kan liknas vid makron. Det finns &nnu en regel,
den tomma regeln, men eftersom den endast anvénds internt i var applikation och déarfor
ar osynlig for anvindaren kommer den inte tas upp i detta dokument.

3.2.6 Antaganden

Ett antagande &r egentligen inte en inferensregel sa mycket som en mirkning av ett
antagande som gors i ett bevis. Regeln finns déar for att flagga att speciella féorhallanden
géller tills man gar ur scopet som definierar antagandet. Nedan visas syntaxen for ett
antagande:

ARule.  Rule == "{” Formula”;” Rule”}” Rule;

Antagandets scope definieras av masvingarna och ” Formula” &r antagandet som introdu-
ceras. Regeln innanfor masvingarna innehaller de inferensregler som gors i antagandets
scope och regeln utanfor innehaller resten av inferensreglerna i beviset.

3.2.7 Introduktionsregler

Nedan beskrivs syntaxen for introduktionsreglerna tagna fran naturlig deduktion. Det
forsta ordet inom citationstecken dr identifieraren for regeln, medan de efterféljande
siffrorna &r referenser till formler i beviset.

AndI. IntroRule ::= " andl” Integer”,” Integer

Detta &r syntaxen for konjunktionsintroduktion, dir de tva siffrorna refererar formler i
beviset som skall kopplas samman med en konjunktion.

OrlIl. IntroRule ::= 7 orI1” Integer”,” Formula;

OrlI2. IntroRule := 7 orI2” Integer”,” Formula;

Ovan visas syntaxen for de tva varianterna av disjunktionsintroduktion. Siffran refererar
till den ena av tva formler som skall bindas samman med en disjunktion, ”Formula” &r
den andra. Infereras den forsta regeln sa hamnar den givna formeln pa hoger sida,
infereras den andra sa hamnar den pa vénster sida.

Notl.IntroRule ::= " notl” Integer” — ” Integer ;

Detta dr definitionen fér negationsintroduktion. De tva siffrorna refererar till bérjan och
slutet pa ett antagande som till slut deriverar L.

NotNotl. IntroRule ::= " notnotl” Integer;

Ovan visas syntaxen for introduktion av dubbel negation. Siffran refererar till formeln
som skall bli dubbelt negerad.

Impl. IntroRule ::= "impll” Integer” — 7 Integer

Syntaxen for implikationsintroducering visas ovan. De tva siffrorna refererar till ett
interval av formler, som &r en derivering av en formel fran en annan.

ForAlll. IntroRule ::= 7" 7[? TIdent” /” TIdent”]” " I” Integer” — " Integer;
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Detta &dr syntaxen for allkvantifierarintroduktion, den &r en av de mest komplicerade i
den abstrakta syntaxen. Den forsta identifieraren &dr den helt nya variabeln som skall
ersittas med den andra identifieraren, vilket &r kvantifieringsvariabeln. Siffrorna anger
intervallet for den nya variabelns scope.

Existl. IntroRule == 77"7"[" Term” /" TIdent”|” ”I” Integer ;

Ovan visas syntaxen for existenskvantierarintroduktion. Siffran refererar till den formel
introduktionen inférs pa.

3.2.8 Eliminationsregler

Nedan introduceras syntaxen for eliminationsreglerna i den abstrakta syntaxen. Samma
generella regler som géller for introduktionsregler, géller dven for eliminationsreglerna.

AndE1. ElimRule ::= 7 andE1” Integer ;
AndE2. ElimRule ::= 7 andE2” Integer ;

Ovan visas de regler som infererar konjunktionseliminering. Siffran refererar till en formel
i beviset med en konjunktion pa hogsta niva.

OrE. ElimRule ::= 7 orE” Integer”,” Integer” —” Integer”,” Integer” —” Integer ;

Syntaxen for disjunktionseliminering &r relativt komplex jimfoért med de andra inferens-
reglerna. Den forsta siffran refererar till en formel med en disjunktion pa hogsta nivan.
De tva aterstaende paren av siffror refererar till varsitt intervall av formler som bada &r
antaganden. De startar med den hogra respektive vinstra delformeln av disjunktionen
som refereras av forsta siffran och deriverar till slut samma formel.

NotE. ElimRule := " notE” Integer”,” Integer ;

Ovan visas syntaxen for negationselimination, dér de tva siffrorna refererar formler som
ar varandras logiska motsats.

NotNotE. ElimRule ::== " notnotE” Integer

Detta ar syntaxen for dubbel negationselimination. Siffran refererar till en formel med
en dubbel negation pa hogsta nivan.

ImpE. ElimRule ::= " implE"” Integer”,” Integer

Syntaxen for implikationselimination visas ovan. Den forsta siffran refererar till en formel
med en implikation pa hogsta niva och den andra refererar till en formel som &r logiskt
ekvivalent till vénstersidan av implikationen.

BottomE. ElimRule ::= 7 bottomE” Integer”,” Formula ;

Ovan visas syntaxen for eliminering av L. Siffran refererar till L och formeln &r vad
man vill introducera.

ForAllE. ElimRule ::= 71”7 E” Term Integer;

Detta édr syntaxen for allkvantifierarelimination. Siffran refererar till en formel med en
allkvantifiering pa hogsta nivan och termen dr vad man vill ersidtta den kvantifierade
variabeln med.

ExistE. ElimRule ::= 77" 7 E” Integer”,” Integer —” Integer ;

Ovan visas syntaxen for existenskvantifierarelimination. Den forsta siffran refererar till
en formel med en existenskvantifiering pa hogsta nivan. Den andra och tredje siffran
refererar till ett interval som &r ett scope for ett antagande av kvantifieringen.
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3.2.9 Deriverade regler

Inferensregler som tas upp nedan kan hérledas med hjélp av ett antal andra regler, men
eftersom dessa anvinds relativt ofta har valet tagits att inkludera dessa i den abstrakta
syntaxen. Anvindandet av deriverade regler kan bl.a. korta ner bevis och pa sa sétt
dven underldtta lasbarheten.

LEM. DerivedRule ::= 7 LEM” Formula;

Detta #r syntaxen for den deriverade regeln lagen om det uteslutna tredje?. Om man
t.ex. anger p som formel, sa kommer regeln inféra p V —p i kontexten.

RAA. DerivedRule ::== " RAA” Integer — 7 Integer;

Ovan visas syntaxen for motsigelsebevis. Siffrorna refererar till ett interval av formler
som &r ett antagande och slutar i L.

MT. DerivedRule ::==" MT?” Integer”,” Integer;

Syntaxen for regeln modus tollens visas ovan. Den forsta siffran refererar till en formel
med en implikation pa hogsta nivan och den andra siffran refererar till en formel som
ar negationen av implikationens hogra sida.

CNF. DerivedRule ::== " CNF" Integer;

Detta ar syntaxen for att aberopa konvertering av en refererad formel till konjunktiv
normalform.

RES. DerivedRule ::= 7 RES” Integer”,” Integer;

Ovan visas syntaxen for att applicera resolutionregeln pa tva refererade formler, vilka
refereras av de tva siffrorna.

3.2.10 Exempel och syntaxtrad

I tabell 3.2.10 visas tva exempel som &r skriva pa den abstrakta syntaxen, det forsta
exemplet dr ett bevis och det andra &r ett teorem.

Tabell 3.2: Tull vinster visas ett bevis och till hdger ett teorem.

Pp—>q

notnotl 1; .

notnotE 2;
andE2 4;
andI 3,5;
|-

=W N
T

pla

© 00~ O Uk Wi+

p&r

For att ge ldsaren en uppfattning om hur ett bevis ser ut efter 6versidttning fran den
abstrakta syntaxen nir det kommer till sjalva applikationen, visas i figur 3.3 ett sadant
parsetrad.

2Eng. Law of the excluded middle.
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Integer
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Figur 3.3: Parsetrdd for beviset i tabell 3.2.10

Deltradet med inferensregler har kortats av for att syntaxtridet ska fa plats pa sidan. Det
finns dock tillrackligt mycket information kvar fér att man ska kunna forsta strukturen.

3.3 Bevisverifiering

Detta avsnitt kommer att forklara bevisverifierarens arbetsgang samt hur det har séikerstillts
att den verkligen gor korrekta bedéomningar av bevis. Det kommer ocksa att presenteras
metoder for visualisering av bevis.

3.3.1 Bevisverifieraren

Denna modul tar in ett bevis och avgor om det dr korrekt eller ej. Beviset innehaller en
lista med premisser, ett antal inferensregler samt en slutsats. Bevisverifieraren applicerar
helt enkelt de angivna inferensreglerna och ser om den sjilv kommer fram till en formel
som matchar den angivna slutsatsen.

Detta ger dock inte alltid mangden information som 6nskas. Darfor kan ocksa bevis-
verifieraren endast utféra de nédviandiga berdkningarna for beviset, utan att kontrollera
om det &r giltigt eller ej. Den applicerar da de angivna inferensreglerna som vanligt,
men utfoér inte den sista kontrollen. Om nagon inferensregel applicerats pa ett felaktigt
sitt, kommer dock endast ett felmeddelande att returneras. Vid visualisering av detta
okontrollerade bevis kan man f6lja de berdkningar som gjorts och se var beviset brister.

Som det kort ndmndes ovan sa kan man fa ytterligare information, vid kontroll av
ogiltiga bevis, om nagon inferensregeln applicerats fel. Exempel pa sadana fall kan vara

30



att en konjunktionseliminering refererar till en formel med en disjunktion pa hogsta niva
eller att en allkvantifieringsintroduktion inte sker pa en helt ny variabel.

3.3.2 Visualisering av bevis

Att kunna visualisera bevis &ar av stort intresse, ur anvindarens perspektiv men ocksa
for utvecklarna. Denna funktion &r till stor hjilp om exempelvis bevisverifieraren démer
ett bevis som ogiltigt och man vill se var det gick fel (givet att alla inferensregler ap-
plicerats korrekt). Det kan ocksa vara av intresse att se hur de olika implementerade
teorembevisarna loser ett teorem. Det beslutades tidigt i utvecklingsfasen att visualise-
ring av bevis skulle kunna ske pa tva olika sétt. Den forsta &r en textbaserad version
som tar ett bevis i linjar form, vilket &r en tabell dir varje rad ar ett steg i beviset. Den
andra visualiseringsmetoden ritar bevis pa tradform med hjilp av ETEXsom slutsteg
vilket bygger upp ett naturligt deduktionstrid. Exempelbevis visualiserade med dessa
metoder visas i tabell 3.3 respektive figur 3.4.

Tabell 3.3: Resolutionsbevis pa tabellform
plalr Premise
“(plaqlr)  Assumption
p& "q& r CNF 2

—_

2.
3.
4. p& q AndE1 3
5. T AndE2 3
6. p AndE1l 4
7. “q AndE2 4
8 1plq RES 15
9. q RES 8 6
0. | RES 9 7
11. plq]lr RAA 210
[H(pVgVvr)] [-(pVgVr)
—pA—gA-r CNF —“p A =g A7 CNF [=(pvqVr)]
pVgVr T Nea ——phq Aeq “pAgA T CNF
PV RES —p Aey ——pA-q Aey
q RES —q D)
T RES
pvgvr HAA

Figur 3.4: Resolutionsbevis pa trdadform

3.4 Implementation av teorembevisare

Detta avsnitt behandlar hur de olika metoderna for teorembevisning tolkats till konkreta
implementationer och vilka eventuella optimeringar som implementerats. Det finns dven
exempel i vart och ett av delavsnitten som visar hur de olika teorembevisarna skapar
bevis for teorem.
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3.4.1 Resolution

Denna teorembevisare bygger upp ett bevis i linjar form. Misslyckas den att konstruera
ett komplett bevis for ett givet teorem, kommer det returneras ett bevis med en tom
lista av inferensregler.

Hjartat i teorembevisaren dr implementationen av resolutionsregeln. Funktionen tar
in tva klausuler som kopplas samman av en disjunktion och konverterar sedan till en lis-
ta av literaler. Listan sorteras i lexikografisk ordning. Detta medf6r att komplementéra
literaler, t.ex. p och —p, hamnar bredvid varandra, vilket underlattar for nésta steg déar
forst dubbletter tas bort och sedan komplementéra literaler. Eftersom listan &r sorterad
kommer sokningen i virsta fall vara O(n?). For att avgora om tva literaler dr kopior
av varandra anvénds likhetsoperatorn och for att avgéra om ett par literaler &r komple-
mentéira anvinds unifiering. De kvarvarande literalerna konverteras sedan tillbaka till
en disjunktiv formel och returneras.

For att konstruera ett bevis for ett teorem sa laggs forst den negerade slutsatsen
till som ett antagande. Dérefter konverteras alla formler som inte redan &r i konjunktiv
normalform och konjunktioner bryts upp sa att varje klausul hamnar pa en varsin rad.
I tabell 3.4 ses ett exempel som visar forberedelserna som gors infér konstruktionen av
ett bevis. Notera att det inte &r komplett.

Tabell 3.4: Forberedelser infor bevis med resolution

1 pVi(gAr) Premiss

2 gAr Premiss

3 -r Antagande
4 (pvgA(pVvr) CNF1

) pVq Nel 4

6 pVvr Neo 4

7 q Nel 2

8 r /\62 2

I tabell 3.4 konverteras formler, som inte redan &r i korrekt form, till konjunktiv nor-
malform och sedan bryts eventuella konjunktioner upp.

Samtliga formler i beviset som &r klausuler ldggs till i en separat lista, en kunskaps-
bas® (KB). Det iir dessa resolutionregeln appliceras pa, och forhoppningsvis deriveras
en motséagelse.

Nésta steg matchar varje formel mot resten av formlerna i KB och sparar resultatet
av appliceringar av resolutionregeln mellan varje par. Finns redan nagra av resultaten
i KB sa kommer dessa filteras bort for att halla resultatlistan sa liten som mdjligt.
Resultatlistan itereras sedan igenom varpa elementet med minst antal literaler viljs ut.
Denna optimering kan liknas vid ”Unit Preference” som tas upp i [25] och innebér att
resolutionregeln endast appliceras déar minst en av formlerna ér en enkel literal. Pa detta
sétt produceras endast resultatklausuler som &r kortare d&n den lingsta inparametern,
vilket dramatiskt forbéttrar prestandan vid teorembevisning. Om det utvalda resultatet
saknar literaler leder detta till 1 som ldggs till i KB och en motségelse har funnits. Om
resultatet ddremot innehaller minst en literal, liggs det till i KB. Resultatlistan kommer
ocksa utokas med resultat fran applicering av resolutionregeln mellan det nya resultatet
och resten av formlerna i KB.

Algoritmen avbryts nir antingen | deriverats fran en applicering av resolutionregeln
eller nér listan med resultat &r tom, vilket innebér att alla mojliga kombinationer av
literaler finns i KB.

3Eng. Knowledge base.
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For att skapa ett mer lédttldast och minimalt bevis kommer baklédngesstegning att ske.
Denna behaller endast de regler som anvidndes for att derivera slutsatsen. Detta gors
framst for att visualiseringen av ett sadant bevis blir littare att forsta for anvéindaren.

I tabell 3.5 visas ett bevis utfort med naturlig deduktion {6ljt av samma bevis utfort
med resolution som visas i tabell 3.6.

Tabell 3.5: Bevis utfort med naturlig deduktion
1. Vz.(P(z) —» Q(x)) Premiss

2. P(xo) Premiss
3. P(xzg) — Q(xo) Ve 1

4. Q(xo) . 3.2
5. Va.Q(x) Va; 2-4

Tabell 3.6: Bevis utfort med resolution

1. Va.(P(z) — Q(z)) Premiss

2. P(xo) Premiss

3. Vz.Q(x) Antagande

5. =Q(fo) CNF 3

6. Q(xo) Resolution 2,4
7. L Resolution 5,6
8. Vz.Q(x) RAA 3-8

I tabell 3.6 syns det t.ex. att unifiering anvéinds da resolutionregeln appliceras pa raderna
5 och 6. Formlerna —Q( fo) och Q(z¢) ar logiskt ekvivalenta givet att den allkvantifierade
variabeln o har vérdet fy, vilket i detta fallet #r en skolemkonstant.

3.4.2 Semantisk tableau

Algoritmen for semantisk tableau kan brytas ner i ett antal steg. Indata (premisserna
och den negerade slutsatsen) konverteras inledningsvis till disjunktiv normalform (som
forklarats i avsnitt 2.3). Detta gor att algoritmen behéver hantera mycket férre regler,
men hiimmar utskriften av beviset som da blir mer svarlast.

Vil konverterat gar informationen igenom en funktion som delar upp den i tre delar.
Forsta urskiljningen dr att alla termer (forutom funktioner) skrivs till en egen lista. Detta
medfor ocksa att alla termer sammankopplade av konjunktioner bryts isdr och placeras i
tidigare namnde lista. Andra méngden blir de predikat och funktioner som férekommer
i teoremet. Pa grund av dess mer komplexa hantering i samband med allkvantifiering
(som togs upp i avsnitt 2.6.2) skiljs de at till en egen lista. Den sista delen &r alla
disjunktioner som &r underlag for de forgreningar som gors. Ett ytterligare steg i denna
del av processen &r att alla variabler som forekommer fran allkvantifiering sparas undan
separat vars anledning blir mer konkret nedan i samma avsnitt.

Nar val informationen dr uppdelad borjar algoritmen med att férsoka hitta en motségelse
bland variablerna och konstanterna. Om det inte finns nagon motségelse dér gors nésta
forsok bland predikaten och funktionerna. Om den inte finner tva komplementéra pre-
dikat eller funktioner (t.ex. P(x) och —P(z)) kommer stkningen istéllet att, med hjilp
av unifiering, finna kvantifieringar som tillsammans med befintliga predikat och funk-
tioner kan leda till en motségelse. Om inte heller detta leder till en motségelse kommer
istéllet den forsta disjunktionen att brytas isdr och anvindas som underlag for en fort-
satt sokning. Algoritmen kommer da som tidigare att bryta isér information och stka
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vidare efter motségelser. Detta fortsitter tills att antingen en motségelse dr funnen i
varje gren (se avsnitt 2.6.2) eller tills det i en gren inte gar att finna en motségelse,
vilket terminerar algoritmen.

Om sokningen lyckas kommer varje soksteg och en lista av anvénda regler att skrivas
ut, i andra fall visas de soksteg som togs fram tills att sokningen terminerats.

I fall dar allkvantifiering finns med i problemet sker en del extra steg utéver den
vanliga s6kningen. Det viktigaste ar att varje allkvantifiering sparas for att anvéndas
som underlag nér algoritmen soker efter maojligheter att finna en motséigelse med predikat
och funktioner. Nér sckningen vénder sig till predikat och funktioner for att stdnga en
gren gors en ny instansiering av den allkvantifierade formeln. Instansieringen anviands
sedan for att forsoka unifieras med 6vrig information och pa sa vis finna en motségelse.

De regler som genereras vid en lyckad sokning anvands for att skapa en representation
av losningen i tridform (se 4.1). En stor férdel med att skriva om ldsningen till en
tradrepresentationen &r att alla de regler som applicerats men inte anvénds for att finna
16sningen kan ignoreras, vilket gor det resulterande tridet mycket mer ldsbart. Tradet
kan slutligen anvindas for att skapa en KXTEX-representation som kan ses i figur 3.5.
Samma bevis visas dven i listform i tabell 3.7.

Tabell 3.7: Ett bevis i listform.

1. r Premiss
2. pAgq Premiss
3. —(gAr) Antagande
4. —qV-r DNF3
5.  —r Antagande
6. L —e1—4
7. q Ne2 2
8. g Antagande
9. 1 e 6—7
10. L Ve3,4—5,7—38
11. qgAr RAA3 -9
PAg
(T U s I B '
—q NV —r 1 1
T Ve
AT RAA

Figur 3.5: Trddrepsentation av ett bevis 1 W TEX.

3.4.3 Narrowing

Att utfora narrowingberdkningar utan begridnsningar dr ganska meningslost eftersom
sokrymden &r stor. Det visar sig dock att tradstrukturen hos bevis konstruerade genom
naturlig deduktion passar ganska bra eftersom varje regel har sitt eget forutséttningskrav.
Man kan alltsa kontrollera dessa bevis lokalt genom att for varje regel kontrollera att
den deriverade formeln passar med de forutsidttande formlerna uppat. Representationer
som t.ex. en linjar form medfér merarbete da narrowing bade maste gissa reglerna och
vilka intervall de skall appliceras pa innan dess riktighet kan kontrolleras. Lokaliteten
hos tridrepresentationen betyder ocksa att det passar for narrowing da vissa delar av
beviset kan vara partiellt instansierade men #nda ga igenom checkern.
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Ett bevis for foljden ¢, ¢, ..., ¢, F ¥ byggs nedifran med slutsatsen ¥ som grund
varpa regler appliceras ”baklénges” och pa detta vis manipulerar denna tills hypoteser
eller premisser ¢; nas. Detta fungerar alldeles utmiirkt for de flesta deduktionsregler.
Dock finns det nagra som stéller till problem som t.ex.

6] (]

SVY X X

X Ve

I detta fall ndrmar vi oss regeln underifran enbart med information om formeln y. Att
verifiera sa att grenarna:
9] [y

PV X X
stammer lokalt skapar problem da vi inte kdnner ¢ och 1 utan enbart att x ar deriverad
fran dessa. En mojlig 16sning &r att lata narrowing instansiera formlerna ¢ och 1 sa att
bevisverifierare kan kontrollera riktigheten lokalt utan att instansiera hela trddet. Detta
visar sig vara nagot kostsamt da den fullstindiga begrinsningen pa dessa formler inte
kommer fram forran ett 16v natts.

Den speciella narrowingstrategi som anvinds dr en variant av lazy narrowing, ut-
vecklad av Lindblad et al [15], att anvéndas for programverifiering av haskellprogram i
verktyget Lazy SmallCheck[19]. Fullstéindigheten f6r sokningen f6ljer av fullstéindigheten
for strategin [18] samt motsvarande i naturlig deduktion som &r var omskrivningsteori.
Narrowingimplementationen tillhandahaller begransningar enligt nedanstaende haskell-
datatyp.

data Prop = 0k Int

| Fail

| AndS Prop Prop
| AndR Prop Prop
| EqInt Int Int
|

IntervalInt Int Int Int

En egen datastruktur for bevis deriverade av narrowing fick utvecklas pa grund av
de begrinsningar i lokal information som finns att tillga vid lokal verifiering samt att
narrowingbiblioteket enbart instansierar heltal.

data Proof = AndI Proof Proof
| 0rI1 Proof
| 0rI2 Proof
| HypRef Int [Elim]

[..]

Vid de flesta eliminationsregler anvénds en elegantare form av regel HypRef dér man
direkt refererar till en premiss eller deriverat antagande och ddrmed slipper problem i
de flesta regler som uppenbarades i V.. Da kan dessa regler istéllet elimineras ovanifran
utan att narrowing maste instansiera hela formeln explicit. For att detta skall fungera
sa konverteras alla identifierare for variabler, predikat och funktioner till heltal. Aven
hypotesreferenser i 16v gors med heltalsindexerade listor likt de Bruijn-index for lambda
kalkyl [3]. Rent tekniskt sker sokningen genom att verifieringsfunktionen bygger upp
ett trad av dessa begrdnsningar som maste gélla for att just det verifierade beviset
skall fungera. Exempel pa detta kan vara intervall for vilka variabler som ar tillatna att
instansiera i nagon term. Hur begrinsningarna som narrowingbiblioteket tillhandahaller
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kan anviéndas kan ses for A;:

XN
PNY
som kan verifieras genom att krdva att bada delgrenarna ¢ och ¢ — 1 gar igenom
okej. For narrowingbiblioteket motsvarar detta att bada grenarna maste evaluera till 0Ok
Int (dér heltalet beskriver en kostnad for den instansieringen). Detta kan goras med
begréinsningen AndS som uttrycker en konjunktion. Sjdvla verifieringen kan ga till pa
detta vis:

check f (AndI a b) = case f of
And x y -> AndS (check x a) (check y b)
-> Fail
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Kapitel 4

Resultat och diskussion

I detta kapitel kommer resultaten och erfarenheterna fran projektet att presenteras och
diskuteras. Forst kommer en analys av implementationen av projektets kdrna och se-
dan jimfors teorembevisarna med avseende pa hastighet, implementationssvarighet och
tydlighet av genererade bevis. Dérefter kommer en lista med mojliga vidareutvecklingar
och slutligen foljer ett stycke som knyter ihop rapporten och aterkopplar till syfte och
projektmal.

4.1 Analys av projektets kdrna

De moduler som utgor kidrnan av projektet dr representationerna av bevis, bevisverifi-
eraren och visualiseringen av bevis. Som ndmnts i avsnitt 1.3 skrevs dessa i ett tidigt
skede av projektet for att ha en stabil grund att bygga vidare pa.

De abstrakta representationerna av bevis har alla olika for- och nackdelar. En fordel
med Proof dr att scope for antaganden &r inbyggt i strukturen vilket dr smidigt nir man
skall verifiera att bevis dr korrekta. LProof har som fordel att den &r vildigt enkel att
skriva ut och att det blir lattlista och tydliga bevis. Den har dock inte nagot inbyggt
stod for att representera scope for antaganden, vilket leder till en del extra arbete néar
man verifierar dem. Med extra arbete menas att antagandens giltighet och huruvida
exempelvis en implikationsintroduktion verkligen borjar med ett antagande maste ve-
rifieras. Det maste ocksa kontrolleras att antaganden endast refereras till i sin helhet
utanfor dess scope. Bade Proof och LProof har som nackdel att man i de automatiska
teorembevisarna maste hantera alla nummerreferenser vid generering av bevis. Eftersom
TProof inte innehaller nagra nummerreferenser ar den lamplig att anvinda i teorembe-
visarna. Denna representation &r den som mest paminner om naturliga deduktionstrad
vilket gor den ldmpad for att anvindas i B TEX-ritaren.

Visualiseringen av bevis gick forhallandevis lédtt att implementera, da funktionalite-
ten for att skriva ut listbevis utnyttjar autogenererade funktioner fran BNFC. Funktio-
nen som skriver ut naturliga deduktionstriad i I&TpXvar dock svarare att implementera.
Att skriva ut bevisen var inte speciellt svart eftersom IATEX-ritaren tar in ett TProof,
vilket dr en vildigt intuitiv struktur att skriva ut pa detta sitt. Att fa dem att se bra
ut var dock inte lika enkelt, exempelvis var det forhallandevis svart att undvika utskrift
av redundanta paranteser. Resultatet blev dock tillfredstéillande och bevisen &r tydliga
och littlésta.
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4.2 Analys av automatiska teorembevisare

For att kunna analysera och dra slutsatser rorande implementationen av teorembevi-
sarna har det utforts ett prestandamétning. De olika bevisarna har fatt bevisa 22 olika
teorem 1000 ganger och tiden har miéitts. Med denna data som grund jamfors de imple-
menterade metoderna.

Aven lisbarheten for var och en av teorembevisarna jamfors. Lisbarhet har haft en
hog prioritet i projektet. Graden av ldsbarhet for ett bevis beror pa flera olika faktorer;
hur stort det &r, hur manga olika inferensregler som anvénts, hur ldtta formlerna i
beviset dr att forsta samt om beviset i sig utforts pa ett, for ménniskan, intuitivt sétt.
Ett exempelproblem bevisas med var och en av bevismetoderna och presenteras pa
tradform for jamforelse. Slutligen diskuteras dven svarighetsgraden pa implementationen
fér vardera metod.

4.2.1 Resultat av prestandaméitning

Som det ndmnts ovan har de implementerade teorembevisarna genomgatt en métning
for att bilda en uppfattning om hur snabbt var och en av dem bevisar olika teorem.
Dessa teorem valdes till en méngd som alla teorembevisarna klarade av att bevisa.
I tabell 4.1 visas resultatet av denna métning. Det har utforts pa en dator med en
Intel(R) Core(TM) 2 Duo 2.0GHz processor med 4096KB cache och 4GB dualchannel
667MHz RAM. Applikationen har infér métningen kompilerats med GHC 6.8.2 och
foljande kommandorad har anvénts: ”ghc —make Main.hs -O2 -optc=03".

Tabell 4.1: Resultat av prestandamditning.

’ Nr. \ Problem \ Resolution \ Tableau \ Narrowing ‘
1. F-pVp 1,012 0,892 18,217
2. a,bFa—b 1,192 0,912 1,388
3. p,gbEpAg 1,288 1,116 1,56
4. p,~(gAr)E—=(pAT) 1,444 1,42 11,637
5. pkp 0,86 0,768 0,948
6. pAg,TEqgAT 1,336 1,288 2,156
7. pAgkp 1,044 0,976 1,232
8. PAGAT,SAtFQANs 1,428 1,3 2,772
9. pAqg—TEpP—q—T 1,724 1,448 5,412
10. P qpFg 1,192 1,248 1,416
11. p—qk-pVg 1,476 1,228 39,762
12. p—oq—r,p—qpkr 1,584 1,34 3,064
13. pVqgVrkEpVgVr 1,66 1,316 1,104
14. aVbEbVa 1,412 1,148 9,673
15. aVbVakaVb 1,3 1,496 3,952
16. p—qb—qg— —p 1,308 1,32 3,324
17. —-q— —pkp— g 1,424 1,272 4,488
18. Va.(P(z) — Q(x)), P(t) F Q(¢) 1,396 1,44 2,2
19. Va.(P(z) — —Q(x)), P(t) F —Q(t) 1,328 1,328 2,532
20. Va.P(z) - Vz.P(x) 1,244 1,18 1,284
21. Jx.P(z) b 3x.P(x) 1,244 1,128 1,424
22. Yy.(y Ab),aVeckb 1,444 1,116 1,684

Totalt: 29,34 26,68 121,229

Tiderna har méatts med unix-kommandot time och det &r tiden "user” som valts. Den-

38



na tid beskriver hur lang tid processorn tar pa sig for att exekvera just det angivna
kommandot, utan att ta hinsyn till tid nedlagd pa andra program som kors samtidigt.
Resultatet ér inte tdnkt att ge en réttvis bild av hur snabbt varje enskild teorembevisare
jobbar, utan meningen #r att man ska kunna jamfora dem sinsemellan.

4.2.2 Thousands of Problems for Theorem Provers (TPTP)

TPTP[27] tillhandahaller en stor méngd problem som &r menade att utgora en rigoros
bas for testning av automatiska teorembevisare. Problemen é&r indelade i kategorier och
har i manga fall en viss bevisalgoritm i atanke.

For att undersoka hur bra vara olika teorembevisarna arbetar pa mer komplexa och
intressantare problem har tva problem fran TPTP testats, ndmligen pusslen: PUZ001+1.p
och PUZ061+1.p. Resolution lyckades bevisa bada dessa pa mycket kort tid och det se-
nare beviset blir hela 38 steg langt. Tableaumetoden finner ett bevis for ett av pusslen
(PUZ061+1.p), men inte for det andra. Det #r mojligt att narrowing klarar att 1osa
pusslen, men det tar i sadana fall mycket lang tid.

Det &r bade roligt och intressant att nagon av bevisarna klarade av att hitta bevis
eftersom detta test verkligen méter var gransen gar for vart system. Nedan visas pusslet
PUZ001+1.p (fritt 6versatt) och man kan se att det inte dr helt trivialt:

Nagon som bor pa Hovs Herrgard har dodat Agatha. Agatha, betjinten och Charles
bor pa Hovs Herrgard och dr de enda som bor dir. Alla mérdare hatar sina offer
och &r inte rikare dn sina offer. Charles hatar ingen som Agatha hatar. Agatha
hatar alla utom betjinten. Betjinten hatar alla som inte &r rikare dn Agatha.
Betjanten hatar alla som Agatha hatar. Ingen hatar alla. Agatha hatar inte alla.
Vem moérdade Agatha?

Teoremet som skall bevisas dr att Agatha mordade sig sjéalv, det vill siga att Agatha
begick sjélvmord.

4.2.3 Resolution

Eftersom all indata konverteras till konjunktiv normalform och dirmed skolemiseras,
tas kvantifierare helt bort. Nar sedan alla konjunktioner brutits ner i klausuler aterstar
endast en delméngd av det logiska spraket som anvénts i projektet. For att deducera ett
bevis anvénds endast 4 (av totalt 22) inferensregler vilket tillsammans med den enkla
och effektiva resolutionsregeln gor det mycket litt att bevisa teorem.

Denna teorembevisare har dock en stor svaghet; manga onddiga beridkningar gors for
att deducera ett bevis. Varje klausul i kunskapsbasen testas mot resten, vilket innebér
att antalet berdkningar som gors ar kvadratiskt mot antalet klausuler i kunskapsbasen.
Om det sedan finns manga literaler i klausulerna sa kommer dven sjilva appliceringen
av inferensregeln bli mycket berdkningstung. Detta leder till att det tar mycket lang tid
att bedéma om ett problem &r satisfierbart.

I tabell 4.1 gar det att avldsa att resolution ar lite langsammare &n tableau pa de
flesta av bevisen. Hastigheten &r dock bra eftersom alla bevis tar ungefir lika lang tid.
Det &r svart att dra nagra djupare slutsatser fran métdata, men man kan spekulera
i att resolution skulle vara snabbare &n tableau pa mer avancerade problem med fler
kvantifierare. Detta eftersom tableau da maste halla reda pa unifierare i olika grenar,
vilket resolution inte behover hantera. Ett sadant resultat har presenterats i [6] dér
resolution och tableau jamforts, och resolution visades vara den mer effektiva av de tva.
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Lasbarhet av genererade bevis

Bevisning av teorem med resolution dr passande for datorer. Detta eftersom bevisning
sker med en mycket liten uppséittning inferensregler och att dessa appliceras i samma
ordning for alla teorem. Metoden dr darfor inte lika intuitiv som naturlig deduktion.

Bevis blir i de flesta fall stérre &n om de gjorts for hand. Detta eftersom ett antal steg
maste tas for att forbereda indata innan appliceringen av resolutionregeln kan bérja. En
forutsattning for att forsta dessa bevis dr att man har kunskap om hur konvertering av
formler till konjunktiv normalform gar till samt hur applicering av resolutionregeln gar
till.

I detta projekt har det valts att ha resolutionregeln som en enkel inferensregel, men
den kan dven ses som ett makro bestaende av inferensregler fran naturlig deduktion
som producerar samma resultat. Om inte resolutionregeln anvénds som ett makro, utan
ersétts av regler fran naturlig deduktion, leder detta till att bevis blir nistintill omgjliga
att forsta. En applicering av resolutionregeln pa tva klausuler, innehallande tva literaler
var och endast ett par komplementéra literaler, innehaller 20-talet steg.

[=(g A )]
r gV ONE g
-q ES —q Aeg
T RES
T RAA

Figur 4.1: Teorem bevisat med resolution och utskrivet som ett naturligt deduktionstrad.

Generellt sett producerar resolution dock bevis som gar att ldsa och forsta, givet att
antalet klausuler och literaler inte dr alltfér stora. Det anvinds ocksa fa inferensregler
vilket leder till att det 4r mindre att ta i beaktning. Ett exempel pa ett bevis deriverat
med resolution aterfinnes i figur 4.1 dér problem 6 i tabell 4.1 bevisats.

Implementation

Resolution var den ldttaste teorembevisaren att implementera. Sjélva kdrnfunktionaliteten
skrevs pa mycket kort tid i och med den effektiva inferensregeln och det begréinsade lo-
giska sprak som anvindes.

Modulen korrigerades bara nagra fa ganger, t.ex. da unifiering implementerades,
men eftersom korrigeringarna bara begréansades till inferensregeln gick dven det snabbt.
Majoriteten av de buggar som berort resolution har istéllet upptackts i modulerna som
skoter konvertering till konjunktiv normalform och unifiering.

Det fanns till och med tid att implementera ett antal optimeringar och i det omradet
har en stor majoritet av tiden investerats. Bland annat implementerades en optimering
for att forbattra prestandan och en for forbattring av ldsbarheten av genererade bevis.
Den senare ndmnda optimering tog néstan ldngre tid att implementera &n den forsta
versionen av hela modulen och var darfér den mest tidskravande delen.

En sak som underldttade implementeringen av denna modul var att det redan fanns
en fardig representation av ett linjart bevis och att bevisverifieraren hade en linjér struk-
tur. Detta kan jamforas med de bada andra teorembevisarna som bygger pa tradstrukturer
och dérfor haltades nagot av att funktionaliteten for konvertering mellan de tva repre-
sentationerna ldnge kranglade.

Implementeringen av denna teorembevisare har ocksa varit mycket underhallande
eftersom man till stor del far fria héander, med undantaget fran konverteringen till kon-
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junktiv normalform och anvindandet av resolutionregeln. Det finns manga dokumente-
rade strategier [25] for att forbéttra prestanda, t.ex. vilka klausuler man ska applicera
resolution pa samt hur man viéljer att dela upp kunskapsbasen.

4.2.4 Semantisk Tableau

Enligt tabell 4.1 &r tableau den av de tre metoderna som arbetar snabbast pa de test
problemen som anvénts. Det kan ocksa noteras att sokrymden for tableau dkar mycket
snabbt nir en stor mingd disjunktioner innefattas i teoremet. Detta kan beskadas i
resultaten for problem nummer 4, 9 och 15 som alla leder till manga disjunktioner efter
att ha konverterats till DNF. Andra mitvirden som star ut &r ett par som innehaller
allkvantifiering, ndmligen problem 18 och 19. Hanteringen av just predikat och allkvan-
tifieringar innefattar en méngd fler berdkningssteg som annars inte utférs. Som teorin
tagit upp maste teorembevisaren borja leta efter mojliga nya instansieringar av variabler
och detta leder lingre exekveringstid. Enligt testet som utforts klarar tableau de flesta
problemen relativt val, men detta kan till stor del bero pa att manga av dem varken
innehaller nagra kvantifierare eller predikat.

Lisbarhet av genererade bevis

Algoritmen &r designad for att effektivt avgoéra om ett problem gar att bevisa och inte
for att producera lattliasta losningar. Lésbarheten av teoremen lider av att alla form-
ler oversétts till DNF, och att ett motséigelsebevis efterstrivas istéllet for att direkt
visa slutsatsen. I de flesta fall bestar 16sningen av ett antal konjuktionseliminationer i
borjan, nagra antagande som avslutas med en negationselimination och en disjunktions-
elimination som binder ihop allt. Eftersom ett motségelsebevis deriveras sa avslutas det
alltid med att RAA-regeln appliceras. I figur 4.2 visas det sjétte problemet ur tabell 4.1
bevisat med semantisk tableau.

PAg
[~(a A7) P, M b
—qv-r PDNF 77 I
T Ve
g RAA

Figur 4.2: Teorem bevisat med semantisk tableau och utskrivet som ett naturligt deduk-
tionstrdd.

Implementation

Tableau-implementering har, for en delméngd av det logiska systemet som inte innehaller
kvantifierare eller predikat, haft riatt struktur sedan starten. Men pa grund av otillricklig
teoretisk grund har det gjorts om flera ganger for att pa ett bra sétt bevisa problem som
innefattar allkvantifiering. Detta har varit den svaraste aspekten av implementationen.
Slutsatsen &r att tableaumetoden till en borjan &r enkel att implementera, men nér
allkvantifiering introduceras dyker manga problem upp. Ett rad for den som vill gora
en egen implementation dr att forbereda sig vél teoretiskt med nagon bra bok, som till
exempel [5] skriven av Fitting.
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4.2.5 Narrowing

Denna bevismetod visar sig vara den langsammaste av de tre vilket ocksa var véntat.
Detta beror pa att metoden bara &r en indirekt sokning, den ”forstar” inte spraket
pa samma sitt som resolution eller tableau-metoderna. Vid varje narrowingsteg kors
bevisverifieraren pa problemet for att verifiera att allting fortfarande géller och aterge
de nya begrinsningarna. Langst tid att bevisa tog problemen 1, 4 och 11 enligt tabell
4.1. Alla tre har gemensamt att de bevisas genom att derivera | vilket ger ldngre
bevis én i de andra fallen vilket ocksa leder till en langre sokning. Jimfort med de
andra tva metoderna sa verkar narrowingsokningen riatt oanvindbar, men eftersom den
jobbar pa partiellt instansierade termer kan den fortfarande vara till nytta i en interaktiv
bevisassistent.

I [16] undersoks hur vél narrowing ldmpar sig i Agda, en bevisassistent for Martin-
Lovs intuitionistiska typteori. Aven hir kommer forfattaren till samma slutsats att det
ar langsamt, men snabbt nog for sma bevis déir ménniskan &r flaskhalsen. 1 stycket 4.3
diskuteras en grafiska teorembevisare lite ytterligare som tilllampning for teorembeviare.

Lasbarhet av genererade bevis

Bevis hittade med narrowingsckningen kan se ut precis hur man 6nskar genom att &dndra
utseendet pa inferensreglerna i verifieraren. Méanniskor uppskattar troligen bevis funna
med narrowing da de innehaller ett rikare sprak av inferensregler (jamfort med resolution
och semantisk tableau) som liknar hur ménniskor drar slutledningar. I implementatio-
nen anvénds hela spraket av naturlig deduktion utom vissa deriverade regler som MT
(formel 2.15 pa sidan 14) och LEM (formel 2.18 pa sidan 14). I figur 4.3 visas det sjétte
problemet i tabell 4.1.

Figur 4.3: Teorem bevisat med narrowing och utskrivet som ett naturligt deduktionstrad.

Implementation

I teorin borde narrowingsokningen vara den enklaste metoden av de tre att implementera
da den enbart bestar av en bevisverifierare pa triadform. Tanken var att anvinda en
fardig verifierare och med nagra sma modifikationer fa den att bli en fullstindig sokning
med minimal arbetsinsats. I praktiken visade det sig dock vara ganska svart att fa till
sokningen da man enbart har indirekt kontroll genom de begrénsningar som aterges till
algoritmen. Svarigheterna i sokningen ligger att finna kreativa men effektiva sétt att
begréinsa hur omskrivningsreglerna appliceras pa slutsatsen. En djupare forstaelse for
omskrivningssystem och definitionstrad ar troligen till mycket stor nytta vid designen
av dessa. Ett exempel pa en sadan begridnsning ir t.ex. att en kostnad sitts pa regeln
for motsdgelsebevis och okas ordentligt for varje gang den anvidnds i samma gren. En
sadan kostnad ”uppmuntrar” stkningen att forscka med andra regler fére den anvénder
samma regel igen da den gors med ett ckande djup pa den maximala kostnaden.

4.3 Vidareutveckling

Detta avsnitt kommer handla om potentiella vidareutvecklingar pa projektet. Eftersom
det dr ett vildigt brett dmne finns det vildigt manga olika tillimpningar som vore
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intressanta att implementera. Detta avsnitt beror dock endast utokningar som vore
relevanta for just detta projekt.

Rikare sprak

For att fa ett rikare sprak vore det intressant att utoka det med fler konnektiv. Detta
skulle exempelvis kunna innebéra att man ligger till ekvivalens (dubbelriktad implika-
tion) och likhet.

Fler bevisverifierare

Bevisverifieraren kan endast verifiera korrektheten hos bevis av typen Proof. Detta in-
nebér att konvertering fran LProof respektive TProof maste goras for att verifiera bevis
genererade av teorembevisarna. Om bevisverifierare som hanterar dessa datatyper im-
plementeras slipper man detta och det gar da dven att testa dessa mot varandra for att
forsdkra sig om att bade konverteringen och verifierarna sinsemellan &r korrekta.

Parser for TPTP

Det var otroligt arbetsamt att manuellt skriva in problemen fran TPTP direkt i var egen
syntax och dédrmed ett hinder for att testa mer en ett fatal problem fran denna databas.
Da den innehaller ett tusental problem kan detta ses som en nddvindig utokning for
effektiv optimering av metoderna.

Optimerad teorembevisare

Det vore intressant att forsoka optimera nagon av teorembevisarna och forsoka losa
storre problem. Exempelvis kunde man férsoka bevisa fler teorem fran TPTP.

Noggrannare testning

Eftersom det dr ett stort system med manga mojliga indata, dr det svart att testa att
allt i systemet fungerar som det ska. Det har bade funnits en uppséttning med problem
som bevisverifieraren testats mot och en uppsittning som teorembevisarna testats mot.
Samlingen med problem hade behovts utokas for att gora en riktigt rigords testning och
optimering av algoritmerna. En mojlig 16sning pa detta hade varit att skriva en parser
for TPTP enligt ovan eller kanske generera problem automatiskt.

Grafisk bevisassistent

For studenter och ldrare kan en interaktiv teorembevisare med ett grafiskt grénsnitt
vara ett bra verktyg vid inldrningen av predikatlogik. Denna skulle kunna fungera sa att
man interaktivt forsoker bevisa ett teorem och att programmet da kan hjélpa en och
sdga till om man gor fel eller visa majliga l6sningar.

4.4 Avslutande reflektioner

Studien var d&mnad att bertra olika implementationsmetoder for att verifiera, bevisa
och visualisera logiska slutledningar. De olika teorembevisarna skulle dven jamforas ut-
ifran prestanda, implementationssvarighet och hur tydliga och littlasta de deducerade
bevisen #r. Allt detta har gjorts och manga slutsatser har dragits angaende fordelar
och nackdelar med de olika representationerna samt designvalen i implementationen av
teorembevisarna. Teorembevisarna har jaimforts och man kan sluta sig till att:
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e Var implementation av semantisk tableau &r den snabbaste.

e Resolution var enklast att implementera och var den enda som klarade bada av de
tva problemen fran TPTP.

e Narrowing producerar mest ldttldsta bevis.
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