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Abstract

Automated reasoning is a prerequisite for computers to be able to deduce logical con-
clusions, i.e. to make decisions on their own. It can for example be used to prove
mathematical theorems. This report presents implementations of three automated the-
orem provers capable of proving theorems in first-order logic. They are based on res-
olution, narrowing and method of analytic tableau and are compared with respect to
performance, readability of generated proofs and difficulty of implementation.



Sammanfattning

Automatiserat resonerande är en förutsättning för att datorer ska kunna härleda logiska
slutledningar, d.v.s. att kunna ta egna beslut. Det kan ocks̊a användas för att exempel-
vis bevisa logiska teorem. Denna rapport kommer att presentera implementationer av
tre automatiska teorembevisare som klarar av att bevisa teorem i predikatlogik. De är
baserade p̊a resolution, narrowing och semantisk tableau och jämförs med avseende p̊a
prestanda, läsbarhet av genererade bevis och sv̊arighetsgrad vid implementering.
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3.1 Översiktligt om implementation . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Moduldiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Abstrakt syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Bevis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Formler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Termer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Identifierare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5 Inferensregler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.6 Antaganden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.7 Introduktionsregler . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.8 Eliminationsregler . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.9 Deriverade regler . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Kapitel 1

Inledning

1.1 Bakgrund

Detta avsnitt kommer att motivera varför automatiserad teorembevisning är av intresse
att studera och vilka fördelar som finns i förh̊allande till mänsklig teorembevisning.
Logikens ursprung kommer att presenteras tillsammans med anledningen till att den är
en förutsättning för att omr̊adet automatiserad teorembevisning existerar.

1.1.1 Logik

Logik är nödvändig för all vetenskap. Utan möjligheten att dra logiska slutledningar är
det inte möjligt att veta om ens slutsatser är giltiga eller ej. Logik används p̊a flera olika
niv̊aer inom olika vetenskapliga omr̊aden, den spelar en mycket central roll i s̊a skilda
omr̊aden som matematik, sociologi eller historia.

Ordet logik kommer fr̊an grekiskans logikos med betydelserna ’som hör till talet’ eller
’förnuftig’. Enligt Platon uppstod logiken ur utbytandet av argument och motargument,
s.k. dialektik1, och studerades för kunna föra en övertygande dialog. Som vetenskap
anses logiken ha grundats av Aristoteles, som med sin lära om syllogismer undersökte
giltigheten hos slutledningar utifr̊an de fyra logiska formlerna: ”alla A är B”, ”n̊agra
A är B”, ”inga A är B” och ”n̊agra A är inte B”. Utvecklingen har sedan dess g̊att
mycket l̊angsamt och det är först under senare hälften av 1800-talet som det sker n̊agra
större förändringar. Dessa kom genom George Booles införande av klasslogik och Gottlob
Freges kvantifieringar och predikatlogik.

Logiken kan delas upp i formell och informell logik. Informell logik berör logik i
argumentationer i naturligt spr̊ak, där Platons dialoger är typiska exempel. Formell
logik är mer sv̊ardefinierat. Vi väljer att se formell logik som symbolisk logik, det vill
säga studien av symboliska abstraktioner som beskriver de formella elementen i logisk
inferens.

Traditionellt har logiken ansetts tillhöra filosofin, men under början av 1900-talet
började man studera det som en grund till matematiken. Ett exempel p̊a detta är Hil-
berts program vars m̊al bland annat var att formalisera alla d̊a existerande matematiska
teorier till en ändlig, komplett mängd axiom och i detta system bevisa att man inte kan
deducera n̊agon motsägelse, det vill säga att systemet är konsistent.

Under senare delen av 1900-talet har logiken spridit sig till fler omr̊aden där den
blivit en mycket värdefull tillg̊ang. Ett exempel är automatiserat resonerande, som detta
projekt handlar om, vilket är ett subfält till artificiell intelligens.

1Plocka isär el. samtalskonst.
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1.1.2 Automatisk teorembevisning

Det finns m̊anga argument för att automatisera teorembevisning. Till att börja med kan
det vara ett enformigt arbete för en människa att bevisa väldigt m̊anga teorem. Detta
fick Whitehead och Russel erfara under arbetet med Principia Mathematica, vilket var
ett försök att härleda alla matematiska sanningar fr̊an en väldefinierad mängd axiom
och inferensregler i symbolisk logik. Det fanns en planerad fjärde volym om geometri
som aldrig blev färdigställd eftersom de blev utmattade av arbetet med de tidigare
volymerna. Nästa argument är det faktum att människor gör misstag, en dator gör det
däremot inte (givet att den har blivit korrekt programmerad av en människa). Bevis
kan lätt bli oöversk̊adliga för en människa, vilket gör det väldigt sv̊art att arbeta med
dem. Det kan även finnas ett värde i att det är just en maskin som drar slutsatsen
eftersom den d̊a kan börja dra självständiga rationella slutsatser. Detta är ett av m̊alen
för forskningen inom artificiell intelligens.

Ett exempel p̊a användningsomr̊aden för automatiska teorembevisare är inom ut-
veckling av processorer. B̊ade Intel och AMD har använt automatiska teorembevisare
för att verifiera att deras implementation av flyttalsdivision är korrekt [14]. Ett annat
exempel är ett program skrivet av Alan Newell, Herbert Simon och J. C. Shaw redan
1955 som hette Logic Theorist. Detta program lyckades bevisa 38 av de första 52 teo-
remen i Principia Mathematica, det lyckades till och med hitta nya och mer eleganta
bevis till vissa teorem [25].

1.2 Syfte

Projektets syfte är att studera olika implementationsmetoder för att verifiera, bevisa och
visualisera logiska slutledningar samt att ta fram en representation av bevis. I arbetet
studeras predikatlogik med naturlig deduktion som deduktionskalkyl.

Studien berör tre olika metoder för automatisk teorembevisning: resolution, seman-
tisk tableau och narrowing. Dessa metoder har jämförts utifr̊an prestanda, implementa-
tionssv̊arighet, läsbarhet av genererade bevis samt vilka sorters problem de olika meto-
derna arbetar bäst med.

1.3 Metod

Tidigt under projektets g̊ang beslutades att det funktionella programmeringsspr̊aket
Haskell skulle användas. En av anledningarna till detta var Haskells stöd för rekursi-
va datatyper vilket är ett väldigt naturligt sätt att representera olika strukturer inom
predikatlogik. Detta eftersom m̊anga av strukturerna är rekursivt definierade.

För att direkt komma ig̊ang med att definiera det logiska spr̊aket beslutades att
BNFC [20] skulle användas. BNFC är ett hjälpmedel vid kompilatorkonstruktion och
genererar funktionalitet för lexikal- och syntaktisk analys utifr̊an en användardefinierad
BNF2-grammatik. Meningen med detta var att snabbt f̊a en stabil grund att bygga
vidare p̊a.

Arbetsg̊angen har tidsmässigt varit indelad i tre perioder. Under den första defini-
erades projektm̊al och programmeringsspr̊ak samt övriga verktyg. Under denna period
läste projektgruppen även in sig p̊a predikatlogik.

I den andra perioden definierades grammatiken för det logiska spr̊aket. Vidare im-
plementerades datastrukturer för att representera bevis samt konverteringsfunktioner
för att konvertera mellan dessa. Slutligen för samma period konstruerades en bevis-

2Backus–Naur form
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verifierare samt funktionalitet för visualisering av bevis p̊a listform och som naturliga
deduktionträd i LATEX.

Tillsist i den tredje perioden delades projektgruppen upp i mindre delgrupper som
tilldelades varsitt omr̊ade inom teorembevisning. Delgrupperna implementerade varsin
teorembevisare vilka slutligen jämfördes med hänsyn till prestanda, läsbarhet av gene-
rerade bevis och implementationssv̊arighet.

1.4 Projektm̊al

Målet med projektet är att implementera tre teorembevisare och dra slutsatser basera-
de p̊a jämförelser av dessa. De baseras p̊a olika metoder för teorembevisning och därför
produceras bevis till teorem p̊a olika sätt. Den första är baserad p̊a inferensregeln re-
solution, den andra är semantisk tableau och den tredje är narrowing. För att kunna
göra detta ska en representation av bevis tas fram och för verifiering av korrektheten
hos genererade s̊adana implementeras även en bevisverifierare. Denna används till att
b̊ade kontrollera bevis genererade av teorembevisarna och bevis som användaren skriver
in. Till sist skall det vara möjligt att visualisera bevis p̊a ett lättläsligt och tydligt sätt.

Här visas en komplett lista av projektm̊alen:

• Framtagning av en logik av typen (första ordningens) predikatlogik.

• Framtagning av en representation av bevis.

• Framtagning av en abstrakt syntax som till̊ater översättning fr̊an text till den
interna representationen av formler och bevis.

• Implementering av en bevisverifierare.

• Visualisering av bevis p̊a listform samt trädform.

• Funktionalitet för konvertering av bevis mellan list- och trädform.

• Implementering av teorembevisare som bygger p̊a inferensregeln resolution, seman-
tisk tableau och sökalgoritmen narrowing.
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Kapitel 2

Teori

I detta kapitel definieras och förklaras det logiska system som projektet berör. En deduk-
tionskalkyl med tillhörande inferensregler beskrivs och allmänna egenskaper för logiska
system definieras. Avslutningsvis beskrivs teorin för de tre bevismetoder som studien
handlar om.

2.1 Predikatlogik

För att kunna dra otvetydiga slutsatser behövs ett formellt spr̊ak att göra detta i. Valet
är en logik av första ordningen vilken har en stor uttryckbarhet1 samtidigt som den är,
till skillnad fr̊an naturliga spr̊ak, helt otvetydig. Den inneh̊aller grundläggande konnek-
tiver fr̊an satslogiken samt predikat och kvantifierare, vilket är förutsättningen för att
en logik ska vara av första ordningen. Predikatlogik är tillräckligt kraftfullt att uttrycka
och formalisera bland annat tv̊a av de viktigare matematiska grundstenarna. Den första
är en mängdlära formulerad genom axiom kallad ZFC2[12], där man försöker undvika
klassiska motsägelser som t.ex. Russels paradox[24]. Den andra är Peano-aritmetik vil-
ket är ett aritmetiskt system kraftfullt nog att representera de naturliga talen genom
ett antal rekursiva axoim. Dock kan predikatlogik inte representera s̊adant som hur ofta
ett predikat P h̊aller.

Formler byggs upp rekursivt av literaler ihopkopplade med unära och binära kon-
nektiver. Nedan konstrueras ett formellt spr̊ak där syntaxen och semantiken förklaras.
Med detta spr̊ak används en deduktionskalkyl som beskrivs i avsnitt 2.2.

2.1.1 Termer

En term är ett uttryck som refererar till ett objekt och är antingen en konstant, variabel
eller funktion. En variabel kan anta vilket värde som helst som en term kan anta. En
funktion best̊ar av en identifierare samt en lista med parametrar. Dessa är i sin tur
termer, vilket gör en funktion till en rekursiv struktur.

Definition 1 Termer

• Vilken variabel som helst är en term.

• En funktion med noll aritet3 kallas för en konstant och är en term.

1Eng. Expressability.
2Eng. Zermelo-Fraenkel set theory, with the axiom of choice.
3Aritet är antalet inparametrar.
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• Om t1, ..., tn är termer och f är en funktion med aritet n > 0 s̊a är f(t1, ..., tn) en
term.

Ett exempel p̊a en funktion är bror(x), vilket motsvarar objektet som är bror till x, där
x är en variabel. Om funktionen skrivs om till bror(John) s̊a motsvarar detta Johns
bror. Här är ’John’ en konstant. Genomförs ytterligare en ändring; bror(far(John)) s̊a
kommer denna funktion returnera objektet som är Johns farbror. Variabler, konstanter
och funktionsidentifierare skrivs med sm̊a bokstäver.

2.1.2 Formler

En formel kallas välbildad omm nedanst̊aende regler rekursivt kan appliceras tills varje
delformel delats upp i atomer. De n̊agot avancerade byggstenarna för formler kommer
först att förklaras kort och sedan följer en formell definition av en formel.

Ett predikat liknar en funktion, men istället för att returnera ett objekt, returnerar
det istället ett boolskt värde. Absurdheten indikerar att n̊agot är absurt, t.ex. att ϕ och
¬ϕ existerar samtidigt i samma kontext. Denna formel skrivs ⊥. Här introduceras tv̊a
kvantifierare, allkvantifiering och existenskvantifiering, som b̊ada kvantifierar över en
viss variabel x. Allkvantifiering innebär att en given formel gäller för samtliga x, medan
en existenskvantifiering säger att formeln gäller för minst ett fall av x.

Definition 2 Formler

• Om ϕ är en formel , d̊a är ¬ϕ en formel.

• Om ϕ och ψ är formler, d̊a är även ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ formler.

• Om ϕ är en formel och x är en variabel s̊a är b̊ade ∀x. ϕ och ∃x. ϕ en formel.

• Om P är en predikatsymbol med aritet n ≥ 1 och om t1, ..., tn är termer s̊a är
P (t1, ..., tn) en formel.

• Vilken term t som helst är en formel.

• ⊥ är en formel.

De tv̊a första reglerna inneh̊aller konnektiver som beskrivs nedan:

• Konnektivet ∧ kallas konjunktion och skall tolkas som ’och’. För att en formel med
denna p̊a toppniv̊a ska vara sann m̊aste b̊ada delformlerna vara sanna.

• Nästa konnektiv kallas disjunktion och skrivs ∨. Detta konnektiv tolkas som ’eller’.
En formel med denna p̊a toppniv̊a är sann om minst en av delformlerna är sanna.

• Konnektivet → kallas implikation och innebär att den vänstra delformeln medför
den högra. En formel p → q utläses ”om p s̊a q”. En formel med implikation är
endast falsk om den vänstra delformeln är sann och den högra är falsk.

• Slutligen kommer konnektivet ¬ som kallas negation. En formel ¬φ är endast sann
om φ är falsk.

Konnektiverna ∧, ∨ och ¬ är triviala men → är inte lika lätt att först̊a. Resomanget för
den sistnämnda följer: om den vänstra delformeln är sann s̊a borde även den högra vara
sann, om den vänstra delformeln är falsk, spelar den högra ingen roll. Exempelvis om
det regnar medför detta att marken är blöt. Om det inte regnar kan marken antingen
vara torr eller blöt. Det kan ha varit uppeh̊all tillräckligt länge för att marken ska ha
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torkat eller det kan nyss ha slutat regna vilket innebär att marken fortfarande är blöt.
Faktumet att det inte regnar utesluter inte n̊agot av de tv̊a alternativen. Slutsatsen att
marken är torr p̊a grund av att det regnar, är dock felaktig.

Semantiken för dessa konnektiver kan enkelt beskrivas med sanningsvärdestabeller,
vilket visas i tabell 2.1.2:

Tabell 2.1: Sanningtabell över satslogiska konnektiver
ϕ ψ ϕ ∧ ψ

Sant Sant Sant
Sant Falskt Falskt

Falskt Sant Falskt
Falskt Falskt Falskt

ϕ ψ ϕ ∨ ψ

Sant Sant Sant
Sant Falskt Sant

Falskt Sant Sant
Falskt Falskt Falskt

ϕ ψ ϕ→ ψ

Sant Sant Sant
Sant Falskt Falskt

Falskt Sant Sant
Falskt Falskt Sant

ϕ ¬ϕ

Sant Falskt
Falskt Sant

P̊a samma sätt som matematiska operatorer s̊a binder dessa konnektiver olika h̊art.
De som binder starkast är de unära konnektiverna ¬, ∀ och ∃. Därefter kommer ∧,
sedan ∨ och till sist →, som binder svagast och är högerassociativ. Formeln ∀x.(P (x)∧
¬∃y.Q(y) → ¬(R(y) ∨ ¬S(x) ∧ T (y))) används i figur 2.1 för att visa bindning av de
logiska konnektiverna:

∀x

→

∧

P

x

¬

∃y

Q

y

¬

∨

R

y

∧

¬

S

x

T

y

Figur 2.1: Syntaxträd för formeln ∀x.(P (x) ∧ ¬∃y.Q(y) → ¬(R(y) ∨ ¬S(x) ∧ T (y)))

Nedan följer definitionen av literaler vilket är formlers atomer.

Definition 3 En literal är antingen en term, ett predikat eller ⊥. Om φ är en literal,
är även ¬φ en literal.

Detta är definitionen av en klausul:

Definition 4 En klausul är en icke tom mängd av literaler sammanbundna av disjunk-
tioner.
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2.1.3 Predikat

Ett predikat liknar en funktion och best̊ar av en identifierare samt en lista med argument.
Skillnaden mot en funktion är att ett predikat är en formel och returnerar därför ett
boolskt värde, till skillnad fr̊an en funktion som refererar till ett objekt. Ett exempel p̊a
ett predikat ses nedan:

Y ngre(x, John)

Predikatet kommer vara sant om x är yngre än John, annars falskt.

2.1.4 Allkvantifiering (∀)

En allkvantifiering ∀x.φ motsvarar en formel där alla möjliga värden p̊a x insatta i
varsitt φ binds samman med konjunktioner. Ett exempel p̊a denna kvantifierare visas
nedan:

∀x.(Katt(x) → Djur(x))

Exemplet kan läsas som att för alla x s̊adant att x är en katt, gäller det ocks̊a att x är
ett djur. I ett system utan allkvantifiering skulle alla möjliga värden p̊a x som är katt
behöva räknas upp och sedan bindas samman med konjuktioner.

2.1.5 Existenskvantifering (∃)

Om allkvantifiering kan ses som en konjunktion av formler, kan existenskvantifiering
∃x.φ istället ses som en disjunktion av formler. För att kvantifieringen ska vara sann
räcker det allts̊a med att φ är sann för ett värde p̊a x. Ett exempel visas nedan:

∃x.(Hatt(x) ∧Huvud(x,Erik))

Detta uttryck läses: det existerar minst ett x s̊adant att x är en hatt och att x är p̊a
Eriks huvud.

2.1.6 Logisk och semantisk konsekvens

För logiska system g̊ar det att definiera tv̊a olika relationer där den ena gäller p̊a det
syntaktiska planet och den andra p̊a det semantiska. Logisk konsekvens är ett av de
mest fundamentala koncepten inom fältet logik. Detta skrivs Γ ⊢ A och tolkas som att
Γ är en mängd av formler och att A symboliskt kan deriveras ur Γ. Att Aristoteles är
dödlig är en logisk konsekvens av att alla människor är dödliga och att Aristoteles är
en människa.

Semantisk konsekvens skrivs A � B och betyder att A medför4 B om en tolkning
som gör alla formler i A sanna gör B sann. Skillnaden mot ⊢ är att den här relationen
gäller semantiskt. För att det ska gälla s̊a krävs det att alla formler i A är sanna och
att B är sann.

2.1.7 Substitution

För att en formel inneh̊allande variabler skall betyda n̊agot mer konkret, behövs ett sätt
att substituera variabeln mot n̊agon konkret information. Definitionen för hur denna
substitution skall g̊a till kräver att b̊ade konceptet med scope samt konceptet med fria
och bundna variabler är definierade.

4Eng. Entails.
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Definition 5 För de tv̊a formlerna ∀x.φ och ∃x.φ s̊a är scopet för ∀x och ∃x lika med
φ minus alla subformler ∀x.ψ och ∃x.ψ i φ.

Exempelvis s̊a är scope för ∃x i ∃x.(P (x) ∨ ∀x.Q(x)) bara P (x).

Definition 6 En variabel kallas fri om den inte är i ett scope som binder den till en
kvantifiering. Motsatsen till en fri variabel är en bunden variabel.

För att tydligt illustrera konceptet med fria och bundna variabler kan man rita ett
parseträd där ∀x och ∃x är noder med endast ett subträd och där även predikat är
noder med predikatsymbolen i noden och lika m̊anga subträd som den har aritet. I figur
2.2 visas ett syntaxträd för (∀x.P (x)∧Q(y))∨ (¬P (x) → ∃y.Q(y)) med information om
variablerna är fria eller bundna.

∨

∧

∀x

P

x
bunden

Q

y
fri

→

¬

P

x
fri

∃y

Q

y
bunden

Figur 2.2: Syntaxträd för (∀x.P (x) ∧ Q(y)) ∨ (¬P (x) → ∃y.Q(y))

Definition 7 Om v1, ..., vn är variabler och t1, ..., tn är termer, s̊a kallas en mängd av
översättningar5 fr̊an fria variabler till termer {t1/ v1, ..., tn/ vn} för en substitution.

Om substitutionen {f(x, y)/x} appliceras p̊a (∀x.P (x) ∧ Q(y)) ∨ (¬P (x) → ∃y.Q(y))
erh̊alls (∀x.P (x) ∧Q(y)) ∨ (¬P (f(x, y)) → ∃y.Q(y)), parseträdet visas i figur 2.1.7:

∨

∧

∀x

P

x

Q

y

→

¬

P

f

x y

∃y

Q

y

Figur 2.3: Syntaxträd för substitutionen {f(x, y)/x}

Substitutioner kan dock leda till otrevliga sidoeffekter. Definitionen nedan löser dessa:

Definition 8 Givet en term t, en variabel x och en formel φ s̊a är t fri med avseende
p̊a x om inget fritt x i φ är i scope för ∀y eller ∃y för n̊agon variabel y i t.

5Eng. Mappings.
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Ett exempel p̊a ett fall som definition ovan löser är: Om subtitutionen {f(x)/y} appli-
ceras p̊a ∀x.(P (x)∧Q(y)) erh̊alls en formel där den insatta termen blir bunden. För att
eliminera denna sidoeffekt behövs det en definition som specificerar när en term är fri
med avseende p̊a en variabel.

Nedan följer en algoritm för hur en substitution appliceras p̊a en formel:

1. Applicera substitutionen rekursivt över samtliga konnektiv i formeln. Om σ är en
substitution s̊a appliceras den enligt:

• (φ ∧ ψ)σ ⇐⇒ (φσ) ∧ (ψ σ)

• (φ ∨ ψ)σ ⇐⇒ (φσ) ∨ (ψ σ)

• (φ→ ψ)σ ⇐⇒ (φσ) → (ψ σ)

• (¬φ)σ ⇐⇒ ¬(φσ)

• (∀x.φ)σ ⇐⇒ ∀x.(φσ)

• (∃x.φ)σ ⇐⇒ ∃x.(φσ).

2. Applicera substitutionen p̊a predikat och funktioner rekursivt över inparametrarna
enligt:

• P (t1, ..., tn)σ ⇐⇒ P (t1 σ, ..., tn σ)

• f(t1, ..., tn)σ ⇐⇒ f(t1 σ, ..., tn σ)

3. Om en fri variabel p̊aträffas och den finns med i σ översätts den enligt substitu-
tionen.

4. Inga andra formler eller termer berörs av substitutionen.

2.2 Naturlig deduktion

För att det logiska system som valts för projektet skall bli intressant, behövs det n̊agon
form av deduktionskalkyl för att kunna bevisa teorem. Valet som gjorts är att stu-
dera naturlig deduktion vilket är ett deduktionssystem som strävar efter att beskriva
logiskt resonemang p̊a ett sätt som känns naturligt. Med naturligt menas att det skall
vara intuitivt och p̊aminna s̊a mycket som möjligt om mänskligt resonerande. Systemet
introducerades som ett alternativ till axiombaserade system som exempelvis Principia
Mathematica. Grunden till naturlig deduktion som det är känt idag lades av Gentzen i
[7]. Prawitz vidareutvecklade det för modal och andra ordningens logik i [21].

En deduktion (eller ett bevis) kan formellt definieras som:

Definition 9 En ändlig sekvens β1, ..., βn av satser kallas för en deduktion av satsen α
fr̊an en samling premisser

∑
om βn = α och för alla 1 ≤ i ≤ n s̊a gäller att βi ∈

∑

eller att βi är resultatet av en inferensregel applicerad p̊a en eller flera tidigare satser.

Man börjar allts̊a med en samling premisser och applicerar sedan ett antal inferensregler
tills man i slutändan har härlett sin slutsats. Man kan välja att ha ett deduktionssystem
med färre regler än vad som valts för detta projekt eftersom m̊anga av dem g̊ar att
härleda med hjälp av de andra. Färre deduktionsregler leder visserligen till längre och
mer sv̊arlästa bevis, men eftersom systemet är mindre är det lättare att implementera.
Egenskapen att kunna producera tydliga bevis har prioriterats i detta projekt och därför
har fler regler inkluderats än vad som är absolut nödvändigt.

Ett sätt att beskriva deduktionsregler är att ha ett v̊agrätt streck, med ett antal
formler ovanför strecket och en formel nedanför. Till höger om strecket skrivs namnet
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p̊a den regel som appliceras. Formlerna ovanför strecket är de man vill applicera den
angivna regeln p̊a, och den under strecket är den resulterande formeln efter att regeln
applicerats. P̊a detta sätt kan man p̊a ett enkelt sätt visualisera bevis genom att bara
bygga vidare upp̊at. De formler som man vill applicera sin inferensregel p̊a är i sin tur
resultatet av tidigare inferenser.

2.2.1 Konjunktion

De första regler som skall studeras är regler för att introducera och eliminera konjunk-
tioner. För att introducera en konjunktion s̊a behöver man tv̊a formler som man sedan
skriver en konjunktion emellan. Detta skrivs:

φ ψ

φ ∧ ψ
∧i

(2.1)

Elimination av en konjunktion kan göras p̊a tv̊a olika sätt. Antingen beh̊aller man den
vänstra delformeln (i förh̊allande till konjunktionen) och utelämnar den högra eller s̊a
beh̊aller man den högra och utelämnar den vänstra. Dessa tv̊a olika alternativ kallas för
konjunktionselimination 1 respektive 2 och skrivs:

φ ∧ ψ

φ
∧e1

φ ∧ ψ

ψ
∧e2

(2.2)

Med hjälp av dessa tv̊a regler är det möjligt att bevisa att p ∧ q, r ⊢ p ∧ r. Detta görs
genom att applicera ∧e1 p̊a första premissen och sedan ∧i p̊a resultatet och den andra
premissen. Detta visas i figur 2.4.

p ∧ q
p ∧e1 r

p ∧ r
∧i

Figur 2.4: Exempel med elimination och introduktion av konjunktioner.

2.2.2 Implikation

Att introducera en implikation är dock inte lika lätt. Om man vill applicera implika-
tionsintroduktion p̊a tv̊a formler φ och ψ s̊a m̊aste man visa att det verkligen g̊ar att
härleda ψ ur φ. Kan man det s̊a g̊ar det att säga att φ→ ψ. Denna regel skrivs:

[φ]
....
ψ

φ→ ψ
→i

(2.3)

Eliminering av implikation kallas även modus ponens, vilken säger att om man har φ
och φ→ ψ s̊a kan man sluta sig till ψ. Detta är väldigt intuitivt, ett exempel p̊a denna
regel är det klassiska resonemanget:

• Alla människor är dödliga. Aristoteles är en människa.

• ∴Aristoteles är dödlig.
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Regeln skrivs:
φ φ→ ψ

ψ
→e

(2.4)

Genom att använda dessa tv̊a regler tillsammans med introduktions- och eliminations-
reglerna för konjunktioner g̊ar det att bevisa att p → (q → r) ⊢ p ∧ q → r. Detta görs
genom att först anta att p ∧ q gäller och utifr̊an det deducera r. När detta är gjort är
det bara att applicera →i och beviset är fullbordat. Detta visas i figur 2.5.

p→ (q → r)
[p ∧ q]
p ∧e1

q → r
→e

[p ∧ q]
q ∧e2

r
→e

p ∧ q → r
→i

Figur 2.5: Exempel med introduktion och elimination av implikationer.

2.2.3 Disjunktion

För introduktion av disjunktion finns det tv̊a olika versioner. Man introducerar en god-
tycklig formel antingen p̊a höger eller vänster sida om en disjunktion där den motsatta
sidan är en redan existerande formel. Reglerna skrivs som:

φ

φ ∨ ψ
∨i1

φ

ψ ∨ φ
∨i2

(2.5)

Elimination av en disjunktion är mer komplex. Givet φ∨ψ m̊aste man visa att en formel
χ är deriverbar ur b̊ade φ och ψ. Kan man göra detta s̊a kan man sluta sig till χ. Detta
kan kännas ointuitivt, men om man funderar över vad φ ∨ ψ betyder s̊a kan man inse
att det är rimligt. Formeln φ ∨ ψ är sann om antingen φ eller ψ är sann eller om b̊ada
är sanna. Om man kan härleda en formel χ fr̊an b̊ade φ och ψ s̊a m̊aste den gälla i alla
de tre fallen, det vill säga när bara φ är sann, eller när bara ψ är sann eller när b̊ada är
det. Om χ gäller oberoende av vilken av φ eller ψ som är sann s̊a kan man tryggt sluta
sig till att den m̊aste gälla och d̊a kan man eliminera disjunktionen. Regeln skrivs som:

φ ∨ ψ

[φ]
....
χ

[ψ]
....
χ

χ ∨e (2.6)

Med hjälp av denna regel g̊ar det att bevisa att p ∨ q ⊢ q ∨ p. Beviset g̊ar att härleda i
fyra steg. Antag p, deducera q ∨ p, antag sedan q och deducera q ∨ p. När detta är gjort
är χ i regeln ovan deducerad fr̊an b̊ade p och q vilket gör att det är möjligt att applicera
regeln. Beviset visas i figur 2.6:

p ∨ q
[p]
q ∨ p

∨i2

[q]
q ∨ p

∨i1

q ∨ p
∨e

Figur 2.6: Exempel med introduktion och elimination av disjunktioner.
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2.2.4 Negation

Negationsintroduktion är även den en komplicerad regel. Den p̊aminner om implika-
tionsintroduktion, men istället för att härleda en godtycklig formel s̊a ska man kunna
härleda ⊥. Detta kan motiveras med att ¬φ är definierat som φ → ⊥. Man kan även
motivera det med följande resonemang: om ¬φ är sann s̊a m̊aste φ leda till ⊥. Denna
regel skrivs:

[φ]
....
⊥
¬φ

¬i
(2.7)

Elimination av en negation sker p̊a följande sätt. Om man i en given kontext har en
formel φ och samtidigt dess logiska motsats ¬φ, s̊a kan man derivera ⊥. Detta eftersom
de tv̊a aldrig kan vara giltiga samtidigt. Detta skrivs:

φ ¬φ

⊥
¬e

(2.8)

2.2.5 Allkvantifiering

Allkvantifierarelimination innebär att man reducerar den kvantifierade mängden vari-
abler till en specifik term. Om formeln φ gäller för alla x, gäller den även för termen t,
eftersom t är en delmängd av alla x. Detta är givet att t är fri i φ. Termen t kan här ses
som en mer konkret instans av x. Denna regel skrivs:

∀x.φ

φ{t/x}
∀xe

(2.9)

Introduktionen av en allkvantifierare g̊ar till p̊a följande sätt: kan man i scopet av en
helt ny variabel x0 derivera en formel φ som beror av av den nya variabeln, s̊a kan man
även anta att formeln gäller för alla x. Detta eftersom inga tidigare antaganden gjorts
om x0 och den anses vara en helt godtycklig variabel. Gäller φ för en godtycklig variabel
x0, gäller den ocks̊a för samtliga x. Detta skrivs:

[x0]....
φ{x0/x}

∀x.φ
∀xi (2.10)

Med hjälp av dessa b̊ada regler g̊ar det att bevisa att ∀x.(P (x) → Q(x)),∀x.P (x) ⊢
∀x.Q(x). Detta kan göras genom att välja en variabel x0 och sedan eliminera allkvanti-
fierarna i premisserna. Sedan är det bara att applicera modus ponens och erh̊alla Q(x0),
detta är d̊a ett bevis för att Q(x) gäller för godtyckliga värden p̊a x och allkvantifieraren
kan d̊a introduceras. Beviset visas i figur 2.7:

∀x.(P (x) → Q(x))

P (x0) → Q(x0)
∀xe

∀x.P (x)

P (x0)
∀xe

Q(x0)
→e

∀x.Q(x)
∀xi

Figur 2.7: Exempel med elimination och introduktion av allkvantifierare.
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2.2.6 Existenskvantifiering

Givet en formel φ som beror av en term t s̊a är det möjligt att införa en existenskvanti-
fiering, där x ersätter t. Resonemanget bygger p̊a att det finns minst ett x s̊adant att φ
är sann, nämligen termen t. Regeln för detta skrivs :

φ{t/x}

∃x.φ
∃xi (2.11)

För att eliminera en existenskvantifiering ∃x.φ gör man ett antagande att φ gäller för
den generella variabeln x0. Är det sedan möjligt att fr̊an antagandet derivera en formel
ψ, som inte beror av x0, s̊a g̊ar det att sluta sig till att ψ gäller. Detta är ännu ett
exempel p̊a en regel som kan verka ointuitiv vid en första anblick, men som är rimlig om
man funderar över vad den egentligen säger. Formeln ∃x.φ säger att det finns minst ett
värde p̊a x s̊adant att φ är sann. Kan man härleda en formel ψ som inte beror p̊a den
generella variabeln x0, s̊a gäller ψ oavsett vilket värde eller värden p̊a x som gör att φ
är sann. Denna regel skrivs:

∃x.φ

[φ{x0/x}]....
ψ

ψ
∃xe (2.12)

Med hjälp av dessa tv̊a regler g̊ar det att bevisa att ∀x.(P (x) → Q(x)),∃x.P (x) ⊢
∃x.Q(x). För att bevisa detta antar man att P (x) gäller för ett godtyckligt värde x0

p̊a x. Nästa steg är att eliminera allkvantifieraren i den första premissen och det är
sedan möjligt att applicera modus ponens och d̊a erh̊alla Q(x0). I och med att Q(x)
gäller för ett värde x0 p̊a x s̊a är det möjligt att introducera en existenskvantifierare
och därmed är ∃x.Q(x) deducerat fr̊an P (x){x0/x} vilket gör det möjligt att applicera
existenskvantifierarelimination. Beviset visas i figur 2.8:

∃x.P (x)

[P (x0)]

∀x.(P (x) → Q(x))

P (x0) → Q(x0)
∀xe

Q(x0)
→e

∃x.Q(x)
∃xi

∃x.Q(x)
∃xe

Figur 2.8: Exempel med introduktion och elimination av existenskvantifierare.

2.2.7 Absurdhet

Eftersom ⊥ är absurdheten s̊a kan man härleda allt ur den. Detta skrivs som:

⊥
φ

⊥e (2.13)

2.2.8 Motsägelsebevis

En väldigt användbar regel är den för motsägelsebevis (lat. reducio ad absurdum). Denna
regel är själva kärnan i bevismetoderna resolution och semantisk tableau. Det finns
väldigt m̊anga bevis som bygger p̊a denna regel, bland annat Euklides välkända bevis

13



att det finns oändligt m̊anga primtal6. Denna regel skrivs enligt:

[¬φ]
....
⊥
φ
RAA

(2.14)

2.2.9 Modus Tollens

En regel som p̊aminner väldigt mycket om modus ponens är modus tollens, den säger
att om man har ¬ψ och φ→ ψ s̊a gäller ¬φ. Ett exempel p̊a denna regel är:

• Alla människor är dödliga. En sten är inte dödlig.

• ∴En sten är inte en människa.

Detta skrivs:
¬ψ φ→ ψ

¬φ
MT

(2.15)

2.2.10 Dubbelnegation

Tv̊a andra intuitiva regler är introduktion och elimination av dubbelnegation. Dessa
skrivs:

φ

¬¬φ
¬¬i

(2.16)

¬¬φ

φ
¬¬e

(2.17)

2.2.11 Lagen om det uteslutna tredje

Den sista regeln i v̊ar deduktionskalkyl är lagen om det uteslutna tredje7. Ett exempel
p̊a denna regel är Shakespeares ”Att vara eller icke vara” som formaliseras φ∨¬φ. Detta
är en uppenbar tautologi och man behöver allts̊a inte ha n̊agot underlag för att kunna
härleda det. Regeln skrivs:

φ ∨ ¬φ
LEM

(2.18)

Intuitionistisk logik är ett exempel p̊a ett logiskt system där varken elimination av
dubbelnegation, lagen om det uteslutna tredje eller motsägelsebevis gäller. Anledning är
att intuitionistisk logik har sina rötter i intuitionismen som säger att objekt m̊aste kunna
konstrueras mentalt innan det g̊ar att resonera om dem. Detta g̊ar emot den traditionella
logiken som säger att existensen av ett objekt kan bevisas genom att motbevisa dess icke-
existens. Detta är anledningen till att motsägelsebevis inte accepteras av intuitionistisk
logik. Av detta följer att bevis i intuitionistisk logik endast kan anses giltiga om det
finns en metod som kan skapa de objekt beviset behandlar.

Lagen om det uteslutna tredje inkluderas inte i den intuitionistiska logiken eftersom
det g̊ar att konstruera ett matematiskt p̊ast̊aende som varken kan bevisas eller motbe-
visas.

Elimination av dubbelnegation till̊ats ej i intuitionistisk logik eftersom synen p̊a
negation här skiljer sig fr̊an traditionell logik, som säger att negationen av ett sant
p̊ast̊aende innebär att detta är falskt. I den intuitionistiska logiken ses detta som ett

6Beviset återfinnes i de flesta böcker om elementär talteori eller exempelvis i [22].
7Eng. Law of the excluded middle.

14



bevis av att p̊ast̊aendet inte g̊ar att bevisa. Om ett p̊ast̊aende P g̊ar att bevisa, s̊a är
det omöjligt att bevisa att det inte g̊ar att bevisa. Dock s̊a innebär avsaknaden av ett
bevis för att det inte finns n̊agot bevis för P , att det faktiskt finns ett bevis för P och
därför är P ett starkare p̊ast̊aende än ¬¬P .

2.3 Normalformer

I detta avsnitt presenteras tv̊a olika normalformer, nämligen disjunktiv- och konjunktiv
normalform. Alla formler i första ordningens logik kan konverteras till en ekvivalent
formel p̊a konjunktiv- eller disjunktiv normalform.

En formel är i konjunktiv normalform omm den är en konjunktion av klausuler.
Exempelvis är ¬φ ∧ (ψ ∨ ϕ) p̊a konjunktiv normalform, men (¬φ ∧ ψ) ∨ ϕ är det in-
te. Konjunktiv normalform är nödvändig för inferensregeln resolution, som bara kan
appliceras p̊a klausuler.

En formel är i disjunktiv normalform omm den är en disjunktion av konjunktiva
klausuler. En konjunktiv klausul är en mängd literaler sammankopplade med konjunk-
tioner. Exempelvis är (¬φ ∧ ψ) ∨ ϕ p̊a disjunktiv normalform, men ¬φ ∧ (ψ ∨ ϕ) är
inte det. Disjunktiv normalform är lämplig för semantisk tableau eftersom disjunktio-
ner hamnar p̊a toppniv̊a i formler och därmed blir färre till antalet. Detta kommer att
förklaras närmare senare i rapporten.

Algoritmen för att konvertera en godtycklig formel av första ordningens logik till
dessa normalformer beskrivs nedan:

1. Eliminera implikationer genom att byta ut φ→ ψ mot ¬φ ∨ ψ.

2. Flytta negationer in̊at i formeln genom att applicera De Morgans lagar:

• ¬(φ ∨ ψ) ⇐⇒ ¬φ ∧ ¬ψ

• ¬(φ ∧ ψ) ⇐⇒ ¬φ ∨ ¬ψ

• ¬∀x.φ ⇐⇒ ∃x.¬φ

• ¬∃x.φ ⇐⇒ ∀x.¬φ

• ¬¬φ ⇐⇒ φ

Till exempel blir ¬(¬φ ∧ ψ) konverterat till φ ∨ ¬ψ.

3. Standardisera variabelnamn för att slippa tvetydigheter när man vid ett senare
steg eliminerar kvantifierare. I formeln ∀x.P (x) ∨ ∃x.Q(x) representerar de tv̊a
kvantifierade variablerna olika x. För att komma ifr̊an detta problem kan formeln
skrivas om till ∀x.P (x) ∨ ∃y.Q(y).

4. Flytta alla kvantifierare längst till vänster i formeln, ∀x.P (x)∨∃y.Q(y) blir ∀x.∃y.(P (x)∨
Q(y)). Eftersom alla variabler nu är standardiserade s̊a finns det inga variabler med
samma namn, vilket medför att denna transformering kan utföras. Om variablerna
inte hade varit standardiserade s̊a hade varje fri variabel med samma namn som
en bunden, efter transformering blivit bunden och formelns logiska innebörd hade
d̊a förändrats.

5. Eliminera existenskvantifierare genom att byta ut alla variabler som de kvantifierar
mot skolemkonstanter eller skolemfunktioner. En skolemfunktion är en funktion
f(x1, ..., xn) där funktionsymbolen f inte redan förekommer i formeln och variab-
lerna x1, ..., xn är de variabler som är allkvantifierade. En skolemkonstant är en
skolemfunktion med noll aritet.
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6. Eftersom alla allkvantifierare nu ligger längst till vänster i formeln och de ex-
istenskvantifierade variablerna har ersatts med skolemkonstanter eller skolemfunk-
tioner, är det säkert att anta att alla de kvarvarande variablerna i formeln är
allkvantifierade. Man kan därför förkasta de kvarst̊aende kvantifieringarna.

7. För konvertering till konjunktiv normalform utför steg (a), för disjunktiv normal-
form utför steg (b).

(a) Distribuera disjunktioner över konjunktioner. (φ∧ψ)∨ϕ blir (φ∨ϕ)∧(ψ∨ϕ)
och φ ∨ (ψ ∧ ϕ) blir (φ ∨ ψ) ∧ (φ ∨ ϕ).

(b) Distribuera konjunktioner över disjunktioner. (φ∨ψ)∧ϕ blir (φ∧ϕ)∨(ψ∧ϕ)
och φ ∧ (ψ ∨ ϕ) blir (φ ∧ ψ) ∨ (φ ∧ ϕ).

2.4 Unifiering

Denna metod utvecklades av Robinson i [23] för att användas inom automatisk teorem-
bevisning. Unifiering utnyttjas frekvent inom logiska programspr̊ak bland annat för att
hantera instansiering av variabler. Den problematik som unifiering löser är att avgöra
om det för en mängd formler finns en substitution som f̊ar dem att se likadana ut.

Definition 10 En substitution σ = {t1/ v1, ..., tn/ vn} kallas för en unifierare för mängden
av formler {E1, ..., Em} om E1σ = E2σ = ... = Emσ.

Om detta leder till n̊agon motsägelse är formlerna inte unifierbara och ett negativt
resultat returneras. Om formlerna däremot är unifierbara returneras en unifierare. För
alla mängder av formler s̊a finns det en unifierare som är mer generell än alla andra,
denna kallas för den mest generella unifieraren.

Definition 11 En substitution σ kallas den mest generella unifieraren om det inte finns
n̊agot par av substitutioner (σ′, τ) s̊adana att σ′ = στ .

För de tv̊a substitutionerna σ1 = {f(g(a, h(x)))/x, g(h(x), b)/y, h(x)/z} och
σ2 = {f(g(x, y))/x, g(z, b)/y} är σ2 mer generell än σ1 eftersom det finns en
substitution τ = {a/x, h(z)/y, h(x)/z} s̊adan att σ1 = σ2τ .

Ett exempel p̊a formler som inte g̊ar att unifiera är P (x, 1) och P (2, x). Jämför
man den första variabeln i de b̊ada formlerna f̊ar man unifieraren {2/x}. När man
sedan g̊ar vidare till den andra variabeln skall man lägga till {1/x} till unifieraren, men
eftersom detta leder till en motsägelse s̊a kan det konstateras att det inte g̊ar att unifiera
formlerna.

Ett specialfall som är värt att uppmärksamma inträffar när man försöker unifie-
ra en formel f med en variabel x, där f inneh̊aller x. Unifieringsalgoritmen kommer
d̊a att fastna i en oändlig loop. Det blir en cyklisk struktur som bara är giltig om f
är identitetsfunktionen. För att implementera en komplett unifieringsalgoritm m̊aste
det testas om f inneh̊aller x, det enda problemet med detta är att unifieringen blir
mindre effektiv, närmare bestämt g̊ar komplexiteten fr̊an O(min(size(t1), size(t2))) till
O(max(size(t1), size(t2))). Detta test kallas kontroll av variabelförekomst8.

8Eng. Occurence check.

16



2.5 Metalogik

Metalogik eller metateori för logik är studiet av egenskaper som logiska teorier och sy-
stem har. Nedan definieras n̊agra relevanta egenskaper för logiska system, dessa kopplas
sedan till predikatlogik.

Definition 12 Ett logiskt system kallas konsistent omm det inte finns n̊agra formler
s̊adana att φ1, . . . , φn ⊢ ψ samtidigt som φ1, . . . , φn ⊢ ¬ψ

Konsistens är en intuitiv, väldigt viktig egenskap, om man har bevisat ψ s̊a bör det inte
vara möjligt att bevisa ¬ψ. I ett system med motsägelser g̊ar allt att bevisa (se formel
2.13).

Definition 13 Om det med hjälp av systemets inferensregler enbart g̊ar att hitta bevis
för semantiskt sanna följder säges systemet vara sunt. Med andra ord φ1, ..., φn ⊢ ψ ⇒
φ1, ..., φn � ψ

Dess signifikans inses snabbt genom att föreställa sig meningslösheten hos ett inferens-
system där det g̊ar att finna bevis för falska p̊ast̊aenden.

Definition 14 Ett inferenssystem säges vara fullständigt om det för varje semantiskt
giltig följd existerar ett bevis φ1, ..., φn � ψ ⇒ φ1, ..., φn ⊢ ψ.

I teorier eller system som har denna egenskap finns det bevis för samtliga teorem,
vilket kan tyckas betryggande. Detta bevisades för predikatlogiken av Gödel i hans
fullständighetsteorem[8]. Problemet är att s̊a fort en teori blir tillräckligt komplicerad
kommer detta inte nödvändigtvis gälla. Om en konsistent teori Γ uppfyller kravet att
den kan uttrycka och bevisa enkla9 aritmetiska sanningar, samtidigt som den kan ut-
trycka vissa sanningar om teorin själv kan man konstruera ett p̊ast̊aende som är sant i Γ
men obevisbart. Även detta resultat bevisades av Gödel i [9] där även de exakta kraven
p̊a Γ presenteras. Konsekvenser som detta innebär för matematiken är att om man vill
h̊alla den konsistent f̊ar man helt enkelt leva med att vissa saker inte g̊ar att bevisa.

Definition 15 Ett problem säges vara avgörbart om det existerar en metod som p̊a ett
ändligt antal beräkningssteg kan sluta sig till ett svar.

Predikatlogiken har visats vara oavgörbar vilket innebär att en sökning efter ett bevis
kan i teorin h̊alla p̊a i all oändlighet. Detta kan visas genom att exempelvis reducera
problemet till en instans av ”Post correspondence problem” vilket görs i [13].

2.6 Automatisk teorembevisning

Som det nämns i inledningen s̊a finns det m̊anga motiveringar till att automatisera
bevisningen av teorem. Detta projekt fokuserar p̊a tre olika metoder. Den första är
resolution, vilken bygger p̊a att man applicerar en inferensregel med samma namn ända
tills man härlett ⊥ vilket leder till ett motsägelsebevis. Nästa metod är tableau. Denna
unyttjar ocks̊a motsägelsebevis för att derivera fram slutsatsen. Tableau arbetar sig fram
genom att bryta isär konjunktioner och förgrena sökningen vid varje disjunktion. Detta
fortsätter tills alla förgreningar leder fram till ⊥ med vilket man kan härleda slutsatsen.
Den tredje och sista metoden kallas för narrowing som är en generell metod för att lösa
ekvationer i omskrivningssytem.

9Addition och multiplikation över naturliga tal.
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2.6.1 Resolution

Denna metod introducerades 1965 av Robinson i [23] och kan delas upp i tv̊a delar. Den
första delen är en inferensregel som härefter kommer att benämnas ”resolutionregeln”.
Den andra delen kommer benämnas ”resolution” och syftar till en teknik för att bevisa
teorem.

För att kunna applicera resolution krävs det att indata är i konjunktiv normal-
form (se avsnitt 2.3). Inferensregeln appliceras p̊a tv̊a klausuler vilka har minst ett par
komplementära literaler. Klausulerna knyts samman av en disjunktion, dubbletter av
literaler tas bort och sedan cancelleras de komplementära literalerna. Detta eftersom en
disjunktion av komplementära literaler, t.ex. p∨¬p, är en tautologi (vilket lätt inses om
man studerar dess sanningsvärdestabell). Resultatet är en klausul som bara inneh̊aller
unika literaler. Är fallet s̊adant att samtliga literaler efter borttagningen av dubblet-
ter ing̊ar i ett komplementärt par, har man deriverat ⊥. Nedan visas definitionen av
resolutionregeln, där literalerna ai och bj är varandras komplement:

a1 ∨ ... ∨ ai ∨ ... ∨ an, b1 ∨ ... ∨ bj ∨ ... ∨ bm
a1 ∨ ... ∨ ai−1 ∨ ai+1 ∨ ... ∨ an ∨ b ∨ ... ∨ bj−1 ∨ bj+1 ∨ ... ∨ bm

(2.19)

Nedan följer ett enklare exempel av resolutionregeln samt en tillhörande förklaring:

a ∨ b, ¬a ∨ c

b ∨ c
(2.20)

De tv̊a klausulerna har ett par komplementära literaler, nämligen a och ¬a. Om a är
sann, s̊a är ¬a falsk och därför m̊aste även c vara sann. Om a däremot är falsk, s̊a m̊aste
b vara sann. Av dessa tv̊a slutsatser kan man komma fram till att, oberoende av värdet
p̊a a, s̊a m̊aste antingen b eller c vara sann, därav b ∨ c.

Den andra delen är, som nämnt ovan, en teknik för att bevisa teorem som bygger p̊a
ett motsägelsebevis. Premisser samt den negerade slutsatsen konverteras till konjunktiv
normalform och därefter bryts samtliga konjunktioner upp. Resolutionregeln appliceras
sedan g̊ang p̊a g̊ang tills att ⊥ är deriverad.

För att tydligt illustrera hur resolution fungerar följer ett exempel. Uppgiften för
teorembevisaren är att bevisa att:

(¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q) ∧ p ⊢ r (2.21)

Premissen är redan i konjunktiv normalform s̊a det behövs inte göras n̊agon konvertering.
Det första steget är d̊a att bryta upp formeln i klausuler och lägga in negationen av
slutsatsen, ¬r, i klausullistan. Denna blir d̊a:

[¬p ∨ ¬q ∨ r,¬p ∨ q, p,¬r]

Resolutionregeln appliceras sedan mellan första och andra formeln vilket ger:

[¬p ∨ ¬q ∨ r,¬p ∨ q, p,¬r,¬p ∨ r]

Nästa steg är att först applicera resolutionregeln mellan p och ¬p ∨ r vilket ger bara r.
Därefter är att det bara att applicera regeln mellan r och ¬r vilket ger:he

[¬p ∨ ¬q ∨ r,¬p ∨ q, p,¬r,¬p ∨ r, r,⊥]

Absurdheten är d̊a deducerad och man har allts̊a funnit en motsägelse, vilket betyder
att r är bevisad fr̊an (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q) ∧ p.
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2.6.2 Semantisk tableau

För att bevisa en formel φmed tableau, antas ¬φ, varp̊a försök att derivera en motsägelse
görs. Motsägelsen produceras genom att omvandla resultatet till ett tableauträd s̊a som
θ. Det best̊ar först bara av en gren men för varje disjunktion i θ som behandlas förgrenas
trädet i tv̊a nya grenar. Uppgiften att producera en motsägelse för hela trädet kallas för
att stänga trädet. Att stänga ett träd gör man genom att stänga trädets grenar.

Definition 16 En gren är stängd när φ och ¬φ, eller ⊥ existerar i grenen.

Expansionen av tableauträdet sker genom att applicera olika regler p̊a trädets grenar. En
av dessa regler är redan definierad och det är regeln för elimination av dubbelnegation,
de andra är dock inte definierade och visas nedan i tabell 2.2 och 2.3.

Tabell 2.2: Reglerna för expansion av α- och β-formler.
Konjunktiv Disjunktiv
α α1 α2 β β1 β2

x ∧ y x y ¬(x ∧ y) ¬x ¬y
¬(x ∨ y) ¬x ¬y x ∨ y x y
¬(x→ y) x ¬y x→ y ¬x y

Dessa regler l̊ater oss omvandla ett tableauträd med logiska formler som noder till ett
nytt tableauträd, expanderat enligt reglerna. Arbetsättet är enligt följande: välj en gren
θ och en formel φ som inte är en literal och utför sedan:

• Om φ är ¬¬x s̊a lägg till noden x till i θ.

• Om φ är en α-formel skall α1 och α2 läggas till som noder i θ.

• Om φ är en β-formel skall det skapas tv̊a nya barnnoder till den sista noden med
β1 och β2, det vill säga tv̊a nya grenar.

P̊a samma sätt som regler delas upp i konjunktiva (α-formler) och disjunktiva (β-
formler) regler, kan det för predikatlogik göras ytterligare en uppdelning mellan all-
kvantifierande och existenskvantifierande formler γ och δ.

Tabell 2.3: Regler för utveckling av γ- och δ-formler.
Universell Existensiell

γ γ(t) δ δ(t)
∀x.Φ Φ{t/x} ∃x.Φ Φ{t/x}
¬∃x.Φ ¬Φ{t/x} ¬∀x.Φ ¬Φ{t/x}

Tabellen ovan visar hur γ-formler och δ-formler används. Det är reglerna för γ-formler
som gör att de flesta implementationer av tableau är l̊angsammare än implementationer
av resolution. I tableau räcker det för alla andra regler att appliceras en g̊ang per formel
i trädet. Dessa regler kan dock behöva användas flera g̊anger p̊a samma formel och det
g̊ar inte att i förväg att veta exakt hur m̊anga g̊anger detta kommer att behöva ske.

När de historiskt sett första implementeringarna av tableau gjordes användes regeln
en g̊ang för varje stängd term [5], men eftersom detta antal kan bli oändligt [5] är det
ingen effektiv strategi. Ett försök att lösa problemet som används i m̊anga nyare imple-
menteringar är användandet av unifiering och ersättandet av reglerna för γ-formlerna
med en regel:

γ

γ(x)
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Denna regel gör en substution p̊a samma vis som förut men istället för att införa γ(t)
där t är en konstant, införs γ(x) med den nya fria variabeln x. Värdet p̊a x sätts senare
med hjälp av unifiering till n̊agot som har möjlighet att stänga en gren.

För att bättre visa hur tableau jobbar sig fram för att finna en lösning följer ett
exempel. Uppgiften för teorembevisaren är att bevisa formel 2.21 fr̊an stycket ovan om
resolution. Det första steget är att anta den negerade slutsatsen, ¬r, och lägga den till
premisserna med hjälp av en konjunktion:

(¬p ∨ (¬q ∨ r)) ∧ (¬p ∨ q) ∧ p ∧ ¬r

Figur 2.9 visar den följande expansionen av tableuträdet:

¬p∨(¬q∨r), (a)

(¬p∨q)∧p, (b)

¬r, (c)

p, (d)

¬p∨q, (e)

¬p, (f)
stängd

¬q∨r, (g)

¬q, (h)

¬p, (i)
stängd

q, (j)
stängd

r, (k)
stängd

Figur 2.9: Exempel p̊a tableauträd

Noderna (d) och (e) bildas fr̊an konjunktionen i (b) som bryts upp genom applicerande
av reglerna för α-formler fr̊an tabell 2.2. D̊a det ännu inte finns n̊agon motsägelse i trädet,
börjar tableau använda reglerna för β-formler fr̊an samma tabell för att expandera det
till flera grenar. Den vänstra grenen g̊ar att stänga genom motsägelsen (f) och (d). Den
högra grenen m̊aste dock expanderas i ytterligare grenar innan trädet kan stängas i sin
helhet. Detta kan göras med hjälp av motsägelser i (d) och (i), (h) och (j) samt (c) och
(k).

2.6.3 Narrowing

Narrowing är en samling beräkningsstrategier för att reducera okända termer i om-
skrivingssystem10. Narrowing används idag som en del av kärnan i s̊a kallade funktionella
logikprogrammeringsspr̊ak, exempelvis Curry[11] och T OY[4] m.fl.[10]. Lite informellt
kan narrowing sägas unifiera vänsterledet i en omskrivningsrege l med en term för att
sedan applicera regeln p̊a den instansierade termen. Vad narrowing egentligen är, kan
lättast åsk̊adliggöras med ett exempel p̊a en sökning efter tilldelningar till okända delar
av en ekvation i ett rekursivt definierat talsystem.

10Eng. Rewrite system.
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Betrakta ett talsystem likt de naturliga talen. Det finns ett tal 0. För varje tal n finns
ett efterföljande tal s(n). I ett s̊adant system blir exempelvis talet 3 definierat rekursivt
genom s(s(s(0))). Likhet följer genom omskrivningsreglerna:

0 = 0 → sant
0 = s(x) → falskt
s(x) = 0 → falskt
s(x) = s(y) → x = y

I denna miljö är det möjligt att införa operatorn för addition rekursivt genom:

0 + n→ n
m+ s(n) → s(m+ n)

Vi kan i detta systemet försöka lösa en ekvationen nedan med en serie omskrivningar:

s(0)+?0 = s(s(0))

Man kan börja med att applicera regel 2 för addition s(0)+?0 → s(0+?0) p̊a vänsterledet
för att f̊a:

s(0+?0) = s(s(0))

Detta kallar man för reduceringssteg. Vidare kan man använda likhetsregel 4 s(0+?0) =
s(s(0)) → 0+?0 = s(0) och sedan applicera den första regeln för addition 0+?0 →?0 p̊a
vänsterledet. Kvar f̊ar vi d̊a ekvationen:

?0 = s(0)

Här är det möjligt att instansiera ?0 → s(?1), vilket ger:

s(?1) = s(0)

Ytterligare en likhetsreduktion och den sista okända termen kan tilldelas ?1 → 0 för att
lösa ekvationen. Lösningen av ekvationen ovan presenterade en möjlig kombination av de
steg som krävdes för en lösning. Hur m̊anga omskrivningsregler som egentligen användes
innan lösningen kunde finnas beror p̊a vilken narrowingstrategi som används. En av de
(sämre) strategierna är att försöka unifiera varje omskrivningsregel med varje oinstansi-
erad term vid varje narrowingsteg, vilket resulterar i en uttömmande sökning. De van-
ligaste strategierna man använder idag kan samlas under namnen lat eller nödvändig
narrowing11 vilka försöker att enbart göra steg som är oundvikliga. Dessa och andra
behandlas översiktligt tillsammans med deras egenskaper i [1]. N̊agot mer formellt kan
man se narrowing som ett verktyg som i omskrivningssystem kan lösa ekvationer ge-
nom att beräkna unifierare med avseende p̊a dess ekvationssteori. Den försöker uppn̊a
sant och skriver om termen tills detta uppn̊atts eller termen är s̊a avsmalnad12 att alla
regler evaluerar till falskt. Nödvändig narrowing visar sig ha goda resultat för system
baserade p̊a definitionsträd13[2].

Inspirationen till att konstruera en bevisletare baserad p̊a narrowing kommer fr̊an
[17], där en bevisverifierare appliceras p̊a en lat nödvändig narrowingimplementation för
att hitta bevis av högre ordningen. Implementationen gjordes i Haskell och utnyttjar en
del finurliga tricks för att undvika att generera egna definitionsträd genom insikt i hur
GHC14 fungerar internt.

11Eng. Needed narrowing.
12Eng. Fully narrowed.
13Eng. Definitional tree.
14The Glasgow Haskell Compiler.
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Latheten kommer väl till pass om narrowing skulle ställas inför en situation likt:

?0∧?1

Om den här försöker instansiera ?0 → falskt behöver vi inte ens evaluera resten eftersom
falskt∧?1 → falskt oavsett vad ?1 antar. Detta gör att den delen av lösningsträdet
kan kapas bort och därmed minska sökrymden. Detta gör att sökningen i praktiken
blir effektivare än en uttömmande sökning samtidigt som alla korrekta lösningar kan
beräknas.

Vi kan omformulera problemet att hitta bevis för en följd av formler i termer av
omskrivning genom att l̊ata slutsatsformeln vara fix och bevisstrukuren det okända ob-
jektet. I detta fall kan vi lätt skära bort delar av sökrymden för varje introduktionsregel
som inte kan appliceras p̊a den yttersta konnektiven. En bevisverifierare av denna formen
kan till exempel se ut n̊agot liknande:

check :: Proof -> Formula -> Bool

Vi l̊ater formeln vandra upp̊at rekursivt genom verifieraren och manipulerar enbart den
baserat p̊a de inferensregler som narrowing ger oss. Nedan följer ett exempel p̊a hur
check kan implementeras:

check p f = case p of

AndI a b -> case f of

And x y -> (check a x) && (check b y)

_ -> False

OrI1 a -> case f of

Or x y -> check a x

_ -> False

[...]

Idén att använda narrowing för bevisletning är dock inte helt ny, det upptäcktes
nämligen för att användas till detta ändam̊al i [26], fast p̊a ett annat sätt än det som
presenterats här. För att en narrowingstrategi skall bli effektiv15, sund och fullständig
krävs oftast att man gör begränsningar p̊a hur sökningen sker och vilka omskrivningar
man till̊ater.

15Minimalt antal steg som inte leder till en lösning.
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Kapitel 3

Implementation

Detta kapitel beskriver projektets upplägg och vilka val som gjorts under implemente-
ringen. Först kommer en översiktlig presentation av hela projektet med ett moduldia-
gram. Sedan beskrivs hur vi valt att representera predikatlogik och naturlig deduktion
som abstrakta datatyper i Haskell. Avslutningsvis beskrivs hur bevis verifieras och de
val som gjorts under implementeringen av teorembevisarna.

3.1 Översiktligt om implementation

Detta avsnitt kommer g̊a igenom de olika modulerna i implementationen, hur de samar-
betar med varandra samt viktiga datatyper som används i stor utsträckning. De moduler
som nämns nedan kommer förklaras senare i detta kapitel.

Hela applikationen byggs p̊a grammatiken, de datatyper som genererats av BNFC
fr̊an den abstrakta syntaxen. Dessa datatyper inkluderar den interna representationen
för formler, teorem, bevis och referenser till inferensregler. Det finns tre representationer
för bevis i applikationen: en generell representation som genereras av BNFC och tv̊a
andra som är mer specialiserade, en för bevis p̊a liststruktur samt en för trädstruktur.
Ett generellt bevis f̊as när text tolkas av BNFC. Dessa bryts sedan ner s̊a att lämpliga
parametrar kan skickas till de olika teorembevisarna alternativt bevisverifieraren. Det
best̊ar av en lista med premisser, ett antal inferensregler samt en slutsats.

Ett bevis p̊a liststruktur inneh̊aller en lista med triplar som var och en best̊ar av ett
referensnummer, en formel och en applicerad inferensregel. Strukturen är starkt influerad
av exemplen i [13]. I tabell 3.1 ses ett enkelt exempel av ett s̊adant bevis:

Tabell 3.1: Bevis p̊a listform
1 p Premiss
2 ¬¬(q ∧ r) Premiss
3 ¬¬p ¬¬i 1
4 q ∧ r ¬¬e 2
5 r ∧e2 4
6 ¬¬p ∧ r ∧i 3, 5

Ett bevis p̊a trädstruktur är rekursivt uppbyggt och varje niv̊a är ett bevis av en formel
givet en inferensregel samt ytterligare ett bevis för varje delträd som inferensregeln
behöver för att derivera den givna formeln. Figur 3.1 visar samma bevis som i tabell
3.1, men p̊a trädstruktur:
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p
¬¬p ¬¬i

¬¬(q ∧ r)
q ∧ r

¬¬e

r ∧e2

¬¬p ∧ r
∧i

Figur 3.1: Bevis p̊a trädform

Det har implementerats en modul som kan konvertera en godtycklig formel till en av tv̊a
normalformer. Antingen konjunktiv- eller disjunktiv normalform. Denna modul används
b̊ade av resolution och tableau. I implementationen av denna modul s̊a byter de stan-
dardiserade variablerna namn till {x0, x1, ...} och skolemkonstanterna och skolemfunk-
tionerna heter {f0, f1, ...}.

Ytterligare en modul som flitigt används av de tv̊a ovannämnda teorembevisarna
är den för unifiering. Denna modul behandlar endast literaler, eftersom det inte finns
behov i applikationen av att unifiera formler p̊a en högre niv̊a.

Resolution genererar ett generellt bevis medan tableau och narrowing genererar bevis
p̊a trädstruktur.

Bevisverifieraren tar antingen in ett bevis i den generella strukturen eller ett bevis i
liststrukturen. Den kan även ta in ett bevis p̊a den generella strukturen och konvertera
detta till ett bevis p̊a liststruktur.

3.1.1 Moduldiagram

För att lättare se relationerna mellan delarna i applikationen visas ett moduldiagram i
figur 3.2. Som detta indikerar har den tre huvuddelar, nämligen en för bevisverifiering,
en för teorembevisare och en för grafisk representation av bevis.

Figur 3.2: Moduldiagram för projektet.
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3.2 Abstrakt syntax

För detta projekt har det tagits fram en abstrakt syntax med hjälp av BNFC[20], som
ocks̊a bygger de datatyper för formler, och till viss utsträckning bevis och inferensregler
som används i applikationen. Detta innebär att bevis och teorem skrivna p̊a denna
syntax kan återanvändas om och om igen. Detta har visat sig vara en mycket värdefull
egenskap vid testning under utvecklingsfasen. Det innebär ocks̊a att användare inte
behöver sätta sig in i den interna representationen av bevis utan istället kan skriva dem
p̊a den abstrakta syntaxen. Bevisen och teoremen blir mer lättläsliga, g̊ar snabbare att
skriva och blir mer intuitionistiska eftersom syntaxen p̊aminner om den notation som
används i avsnittet om predikatlogik.

I det här avsnittet visas och förklaras de grammatiska regler som ing̊ar i den abstrakta
syntaxen. Förklaringen kommer börja p̊a en hög niv̊a för att ge en bra överblick och
sedan arbeta sig ned̊at. Det kommer sedan visas konkreta exempel p̊a hur bevis och
teorem skrivs i denna syntax och även hur ett syntaxträd1 av ett bevis ser ut. För att ta
del av detta avsnitt s̊a bör läsaren tagit del av avsnitten om predikatlogik och naturlig
deduktion.

3.2.1 Bevis

Ett bevis är en lista av premisser, ett antal inferensregler applicerade p̊a premisserna
samt en slutsats. Nedan visas definitionen av ett bevis p̊a den abstrakta syntaxen:

PProof. Proof ::= [Formula] ” ==> ”Rule ” | − ”Formula ;

Ovan representeras premisserna av en lista med formler separerad med semikolon. Det
finns naturligtvis en regel som säger beskriver att det skall vara semikolon som separa-
tor, men eftersom den är trivial tas den inte uppe i detta dokument. Inferensreglerna
representeras av datatypen, ”Rule”. Notationen säger att detta element inte är en lista,
till skillnad fr̊an premisserna, vilket tyder p̊a att detta är en rekursiv datatyp. En ”Ru-
le” inneh̊aller en inferensregel och ännu en ”Rule”. Bevisets slutsats representeras av en
formel. Tecknen som separerar dessa element är till för BNFC vid översättningen till de
interna datatyperna och skickas inte vidare till applikationen.

Denna datatyp är även den som används för att representera ett teorem - man
utelämnar bara inferensreglerna. Detta p̊a grund av en begränsning i BNFC som medför
att man inte kan ha flera s.k. ”entry points” i grammatiken. Detta innebär i korthet att
det inte f̊ar finnas tvetydigheter i vad som ska tolkas och översättas. Skickar man in
ett teorem till bevisverifieraren, s̊a kommer den att tolka det som ett ogiltigt bevis
p̊a grund av avsaknaden av inferensregler. Skickar man in ett bevis till n̊agon av v̊ara
teoremsbevisare, kommer den att förkasta inferensreglerna och försöka bevisa det p̊a
egen hand.

3.2.2 Formler

Nedan visas de definitioner för formlerna som best̊ar av en binär operator som binder
ihop tv̊a formler:

Impl. Formula ::= Formula ”− > ”Formula1 ;

Or. Formula1 ::= Formula1 ” | ”Formula2 ;

And. Formula2 ::= Formula2 ”& ”Formula3 ;

1Eng. Parse tree.
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Definitionerna ovan säger att en formel kan vara tv̊a formler som binds samman av
antingen en implikation, konjunktion eller disjunktion. Siffrorna efter ordet ”Formula”
anger hur h̊art operatorn binder. Ju lösare bindning, desto lägre nummer (inget nummer
kan tolkas som siffran 0).

Här följer de definitioner som beskriver kvantifieringar över en viss formel:

All. Formula3 ::= ”!” ”[”TIdent ”]” ” : ”Formula3 ;

Exist. Formula3 ::= ”?” ”[”TIdent ”]” ” : ”Formula3 ;

Definitionerna säger att en formel kan vara en allkvantifiering eller en existenskvantifie-
ring av en given variabel över en formel. Observera att hakparenteser inom citationstec-
ken och ”vanliga” hakparenteser inte betyder samma sak. Vanliga hakparenteser tyder
p̊a att elementet är en lista, medan hakparenteser inom citationstecken är till för BNFC
vid översättningen till de interna datatyperna.

Nedan följer definitionen av en negation:

Neg. Formula3 ::= ” ∼ ”Formula3 ;

Definitionen säger helt enkelt att en formel kan vara en negation av en annan formel.
Till sist visas definitionerna av de olika atomerna i datatypen formel:

Pred. Formula4 ::= PIdent ”(” [Term] ”)” ;

Bottom.Formula4 ::= ” | ” ;

Term.Formula4 ::= Term ;

Definitionerna ovan säger att en formel kan vara ett predikat, ⊥ eller en term. Ett predi-
kat best̊ar av en identifierare samt en kommaseparerad lista med termer som argument,
omslutna av ett par parenteser.

3.2.3 Termer

Det finns tre olika varianter av termer: variabler, funktioner och konstanter. Dessa visas
nedan:

V ar. Term ::= TIdent ;

Const. Term ::= TIdent ”(” ”)” ;

Func. Term ::= TIdent ”(” [Term] ”)” ;

En variabel är en enkel identifierare, en konstant är en funktion som inte tar emot n̊agra
argument och en funktion är en identifierare med en kommaseparerad lista av termer
som argument, omslutna av ett par parenteser.

3.2.4 Identifierare

Det finns tv̊a olika typer av identifierare i den abstrakta syntaxen:

tokenTIdent ( lower ( letter | digit | ′ ′ )∗ ) ;

tokenPIdent (upper ( letter | digit | ′ ′ )∗ ) ;

En ”TIdent” är en godtycklig sekvens av sm̊a bokstäver, siffror och understreck. Den-
na identifierare används till variabler, funktioner, konstanter och kvantifieringar. En
”PIdent” är en godtycklig sekvens av stora bokstäver, siffror och understreck. Denna
identifierare används endast till predikat. Tv̊a begränsningar som BNFC lägger p̊a de
b̊ada är att identifierarna måste börja p̊a en bokstav, samt att sekvensen av tecken m̊aste
vara minst ett tecken l̊ang.
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3.2.5 Inferensregler

Det finns fyra olika typer av inferensregler: antaganden, introduktionsregler, elimina-
tionsregler samt deriverade regler som kan liknas vid makron. Det finns ännu en regel,
den tomma regeln, men eftersom den endast används internt i v̊ar applikation och därför
är osynlig för användaren kommer den inte tas upp i detta dokument.

3.2.6 Antaganden

Ett antagande är egentligen inte en inferensregel s̊a mycket som en märkning av ett
antagande som görs i ett bevis. Regeln finns där för att flagga att speciella förh̊allanden
gäller tills man g̊ar ur scopet som definierar antagandet. Nedan visas syntaxen för ett
antagande:

ARule. Rule ::= ”{”Formula ”; ”Rule ”}”Rule ;

Antagandets scope definieras av m̊asvingarna och ”Formula” är antagandet som introdu-
ceras. Regeln innanför m̊asvingarna inneh̊aller de inferensregler som görs i antagandets
scope och regeln utanför inneh̊aller resten av inferensreglerna i beviset.

3.2.7 Introduktionsregler

Nedan beskrivs syntaxen för introduktionsreglerna tagna fr̊an naturlig deduktion. Det
första ordet inom citationstecken är identifieraren för regeln, medan de efterföljande
siffrorna är referenser till formler i beviset.

AndI. IntroRule ::= ” andI ” Integer ”, ” Integer ;

Detta är syntaxen för konjunktionsintroduktion, där de tv̊a siffrorna refererar formler i
beviset som skall kopplas samman med en konjunktion.

OrI1. IntroRule ::= ” orI1 ” Integer ”, ”Formula ;

OrI2. IntroRule ::= ” orI2 ” Integer ”, ”Formula ;

Ovan visas syntaxen för de tv̊a varianterna av disjunktionsintroduktion. Siffran refererar
till den ena av tv̊a formler som skall bindas samman med en disjunktion, ”Formula” är
den andra. Infereras den första regeln s̊a hamnar den givna formeln p̊a höger sida,
infereras den andra s̊a hamnar den p̊a vänster sida.

NotI.IntroRule ::= ”notI ” Integer ” − ” Integer ;

Detta är definitionen för negationsintroduktion. De tv̊a siffrorna refererar till början och
slutet p̊a ett antagande som till slut deriverar ⊥.

NotNotI. IntroRule ::= ”notnotI ” Integer ;

Ovan visas syntaxen för introduktion av dubbel negation. Siffran refererar till formeln
som skall bli dubbelt negerad.

ImpI. IntroRule ::= ”implI” Integer ” − ” Integer ;

Syntaxen för implikationsintroducering visas ovan. De tv̊a siffrorna refererar till ett
interval av formler, som är en derivering av en formel fr̊an en annan.

ForAllI. IntroRule ::= ”!” ”[”TIdent ”/”TIdent ”]” ”I” Integer ” − ” Integer ;
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Detta är syntaxen för allkvantifierarintroduktion, den är en av de mest komplicerade i
den abstrakta syntaxen. Den första identifieraren är den helt nya variabeln som skall
ersättas med den andra identifieraren, vilket är kvantifieringsvariabeln. Siffrorna anger
intervallet för den nya variabelns scope.

ExistI. IntroRule ::= ”?” ”[”Term ”/”TIdent ”]” ”I” Integer ;

Ovan visas syntaxen för existenskvantierarintroduktion. Siffran refererar till den formel
introduktionen införs p̊a.

3.2.8 Eliminationsregler

Nedan introduceras syntaxen för eliminationsreglerna i den abstrakta syntaxen. Samma
generella regler som gäller för introduktionsregler, gäller även för eliminationsreglerna.

AndE1. ElimRule ::= ” andE1 ” Integer ;

AndE2. ElimRule ::= ” andE2 ” Integer ;

Ovan visas de regler som infererar konjunktionseliminering. Siffran refererar till en formel
i beviset med en konjunktion p̊a högsta niv̊a.

OrE.ElimRule ::= ” orE ” Integer ”, ” Integer ”− ” Integer ”, ” Integer ”− ” Integer ;

Syntaxen för disjunktionseliminering är relativt komplex jämfört med de andra inferens-
reglerna. Den första siffran refererar till en formel med en disjunktion p̊a högsta niv̊an.
De tv̊a återst̊aende paren av siffror refererar till varsitt intervall av formler som b̊ada är
antaganden. De startar med den högra respektive vänstra delformeln av disjunktionen
som refereras av första siffran och deriverar till slut samma formel.

NotE.ElimRule ::= ”notE ” Integer ”, ” Integer ;

Ovan visas syntaxen för negationselimination, där de tv̊a siffrorna refererar formler som
är varandras logiska motsats.

NotNotE.ElimRule ::= ”notnotE ” Integer ;

Detta är syntaxen för dubbel negationselimination. Siffran refererar till en formel med
en dubbel negation p̊a högsta niv̊an.

ImpE.ElimRule ::= ” implE ” Integer ”, ” Integer ;

Syntaxen för implikationselimination visas ovan. Den första siffran refererar till en formel
med en implikation p̊a högsta niv̊a och den andra refererar till en formel som är logiskt
ekvivalent till vänstersidan av implikationen.

BottomE.ElimRule ::= ” bottomE ” Integer ”, ”Formula ;

Ovan visas syntaxen för eliminering av ⊥. Siffran refererar till ⊥ och formeln är vad
man vill introducera.

ForAllE.ElimRule ::= ”!” ”E”TermInteger ;

Detta är syntaxen för allkvantifierarelimination. Siffran refererar till en formel med en
allkvantifiering p̊a högsta niv̊an och termen är vad man vill ersätta den kvantifierade
variabeln med.

ExistE.ElimRule ::= ”?” ”E” Integer ”, ” Integer − ” Integer ;

Ovan visas syntaxen för existenskvantifierarelimination. Den första siffran refererar till
en formel med en existenskvantifiering p̊a högsta niv̊an. Den andra och tredje siffran
refererar till ett interval som är ett scope för ett antagande av kvantifieringen.
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3.2.9 Deriverade regler

Inferensregler som tas upp nedan kan härledas med hjälp av ett antal andra regler, men
eftersom dessa används relativt ofta har valet tagits att inkludera dessa i den abstrakta
syntaxen. Användandet av deriverade regler kan bl.a. korta ner bevis och p̊a s̊a sätt
även underlätta läsbarheten.

LEM.DerivedRule ::= ”LEM ”Formula ;

Detta är syntaxen för den deriverade regeln lagen om det uteslutna tredje2. Om man
t.ex. anger p som formel, s̊a kommer regeln införa p ∨ ¬p i kontexten.

RAA.DerivedRule ::= ”RAA ” Integer − ” Integer ;

Ovan visas syntaxen för motsägelsebevis. Siffrorna refererar till ett interval av formler
som är ett antagande och slutar i ⊥.

MT.DerivedRule ::= ”MT ” Integer ”, ” Integer ;

Syntaxen för regeln modus tollens visas ovan. Den första siffran refererar till en formel
med en implikation p̊a högsta niv̊an och den andra siffran refererar till en formel som
är negationen av implikationens högra sida.

CNF.DerivedRule ::= ”CNF ” Integer ;

Detta är syntaxen för att åberopa konvertering av en refererad formel till konjunktiv
normalform.

RES.DerivedRule ::= ”RES ” Integer ”, ” Integer ;

Ovan visas syntaxen för att applicera resolutionregeln p̊a tv̊a refererade formler, vilka
refereras av de tv̊a siffrorna.

3.2.10 Exempel och syntaxträd

I tabell 3.2.10 visas tv̊a exempel som är skriva p̊a den abstrakta syntaxen, det första
exemplet är ett bevis och det andra är ett teorem.

Tabell 3.2: Till vänster visas ett bevis och till höger ett teorem.
1 p;

2 ~~(q & r)

3 ==>

4 notnotI 1;

5 notnotE 2;

6 andE2 4;

7 andI 3,5;

8 |-

9 ~~p & r

1 p -> q

2 ==>

3 |-

4 ~p | q

För att ge läsaren en uppfattning om hur ett bevis ser ut efter översättning fr̊an den
abstrakta syntaxen när det kommer till själva applikationen, visas i figur 3.3 ett s̊adant
parseträd.

2Eng. Law of the excluded middle.
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Figur 3.3: Parseträd för beviset i tabell 3.2.10

Delträdet med inferensregler har kortats av för att syntaxträdet ska f̊a plats p̊a sidan. Det
finns dock tillräckligt mycket information kvar för att man ska kunna först̊a strukturen.

3.3 Bevisverifiering

Detta avsnitt kommer att förklara bevisverifierarens arbetsg̊ang samt hur det har säkerställts
att den verkligen gör korrekta bedömningar av bevis. Det kommer ocks̊a att presenteras
metoder för visualisering av bevis.

3.3.1 Bevisverifieraren

Denna modul tar in ett bevis och avgör om det är korrekt eller ej. Beviset inneh̊aller en
lista med premisser, ett antal inferensregler samt en slutsats. Bevisverifieraren applicerar
helt enkelt de angivna inferensreglerna och ser om den själv kommer fram till en formel
som matchar den angivna slutsatsen.

Detta ger dock inte alltid mängden information som önskas. Därför kan ocks̊a bevis-
verifieraren endast utföra de nödvändiga beräkningarna för beviset, utan att kontrollera
om det är giltigt eller ej. Den applicerar d̊a de angivna inferensreglerna som vanligt,
men utför inte den sista kontrollen. Om n̊agon inferensregel applicerats p̊a ett felaktigt
sätt, kommer dock endast ett felmeddelande att returneras. Vid visualisering av detta
okontrollerade bevis kan man följa de beräkningar som gjorts och se var beviset brister.

Som det kort nämndes ovan s̊a kan man f̊a ytterligare information, vid kontroll av
ogiltiga bevis, om n̊agon inferensregeln applicerats fel. Exempel p̊a s̊adana fall kan vara
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att en konjunktionseliminering refererar till en formel med en disjunktion p̊a högsta niv̊a
eller att en allkvantifieringsintroduktion inte sker p̊a en helt ny variabel.

3.3.2 Visualisering av bevis

Att kunna visualisera bevis är av stort intresse, ur användarens perspektiv men ocks̊a
för utvecklarna. Denna funktion är till stor hjälp om exempelvis bevisverifieraren dömer
ett bevis som ogiltigt och man vill se var det gick fel (givet att alla inferensregler ap-
plicerats korrekt). Det kan ocks̊a vara av intresse att se hur de olika implementerade
teorembevisarna löser ett teorem. Det beslutades tidigt i utvecklingsfasen att visualise-
ring av bevis skulle kunna ske p̊a tv̊a olika sätt. Den första är en textbaserad version
som tar ett bevis i linjär form, vilket är en tabell där varje rad är ett steg i beviset. Den
andra visualiseringsmetoden ritar bevis p̊a trädform med hjälp av LATEXsom slutsteg
vilket bygger upp ett naturligt deduktionsträd. Exempelbevis visualiserade med dessa
metoder visas i tabell 3.3 respektive figur 3.4.

Tabell 3.3: Resolutionsbevis p̊a tabellform
1. p | q | r Premise
2. ˜( p | q | r ) Assumption
3. ˜p & ˜q & ˜r CNF 2
4. ˜p & ˜q AndE1 3
5. ˜r AndE2 3
6. ˜p AndE1 4
7. ˜q AndE2 4
8. p | q RES 1 5
9. q RES 8 6
10. | RES 9 7
11. p | q | r RAA 2 10

p ∨ q ∨ r

[¬(p ∨ q ∨ r)]
¬p ∧ ¬q ∧ ¬r CNF

¬r ∧e2

p ∨ q RES

[¬(p ∨ q ∨ r)]
¬p ∧ ¬q ∧ ¬r CNF

¬p ∧ ¬q
∧e1

¬p ∧e1

q RES

[¬(p ∨ q ∨ r)]
¬p ∧ ¬q ∧ ¬r CNF

¬p ∧ ¬q
∧e1

¬q ∧e2

⊥
RES

p ∨ q ∨ r RAA

Figur 3.4: Resolutionsbevis p̊a trädform

3.4 Implementation av teorembevisare

Detta avsnitt behandlar hur de olika metoderna för teorembevisning tolkats till konkreta
implementationer och vilka eventuella optimeringar som implementerats. Det finns även
exempel i vart och ett av delavsnitten som visar hur de olika teorembevisarna skapar
bevis för teorem.
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3.4.1 Resolution

Denna teorembevisare bygger upp ett bevis i linjär form. Misslyckas den att konstruera
ett komplett bevis för ett givet teorem, kommer det returneras ett bevis med en tom
lista av inferensregler.

Hjärtat i teorembevisaren är implementationen av resolutionsregeln. Funktionen tar
in tv̊a klausuler som kopplas samman av en disjunktion och konverterar sedan till en lis-
ta av literaler. Listan sorteras i lexikografisk ordning. Detta medför att komplementära
literaler, t.ex. p och ¬p, hamnar bredvid varandra, vilket underlättar för nästa steg där
först dubbletter tas bort och sedan komplementära literaler. Eftersom listan är sorterad
kommer sökningen i värsta fall vara O(n2). För att avgöra om tv̊a literaler är kopior
av varandra används likhetsoperatorn och för att avgöra om ett par literaler är komple-
mentära används unifiering. De kvarvarande literalerna konverteras sedan tillbaka till
en disjunktiv formel och returneras.

För att konstruera ett bevis för ett teorem s̊a läggs först den negerade slutsatsen
till som ett antagande. Därefter konverteras alla formler som inte redan är i konjunktiv
normalform och konjunktioner bryts upp s̊a att varje klausul hamnar p̊a en varsin rad.
I tabell 3.4 ses ett exempel som visar förberedelserna som görs inför konstruktionen av
ett bevis. Notera att det inte är komplett.

Tabell 3.4: Förberedelser inför bevis med resolution
1 p ∨ (q ∧ r) Premiss
2 q ∧ r Premiss
3 ¬r Antagande
4 (p ∨ q) ∧ (p ∨ r) CNF 1
5 p ∨ q ∧e1 4
6 p ∨ r ∧e2 4
7 q ∧e1 2
8 r ∧e2 2

I tabell 3.4 konverteras formler, som inte redan är i korrekt form, till konjunktiv nor-
malform och sedan bryts eventuella konjunktioner upp.

Samtliga formler i beviset som är klausuler läggs till i en separat lista, en kunskaps-
bas3 (KB). Det är dessa resolutionregeln appliceras p̊a, och förhoppningsvis deriveras
en motsägelse.

Nästa steg matchar varje formel mot resten av formlerna i KB och sparar resultatet
av appliceringar av resolutionregeln mellan varje par. Finns redan n̊agra av resultaten
i KB s̊a kommer dessa filteras bort för att h̊alla resultatlistan s̊a liten som möjligt.
Resultatlistan itereras sedan igenom varp̊a elementet med minst antal literaler väljs ut.
Denna optimering kan liknas vid ”Unit Preference” som tas upp i [25] och innebär att
resolutionregeln endast appliceras där minst en av formlerna är en enkel literal. P̊a detta
sätt produceras endast resultatklausuler som är kortare än den längsta inparametern,
vilket dramatiskt förbättrar prestandan vid teorembevisning. Om det utvalda resultatet
saknar literaler leder detta till ⊥ som läggs till i KB och en motsägelse har funnits. Om
resultatet däremot inneh̊aller minst en literal, läggs det till i KB. Resultatlistan kommer
ocks̊a utökas med resultat fr̊an applicering av resolutionregeln mellan det nya resultatet
och resten av formlerna i KB.

Algoritmen avbryts när antingen ⊥ deriverats fr̊an en applicering av resolutionregeln
eller när listan med resultat är tom, vilket innebär att alla möjliga kombinationer av
literaler finns i KB.

3Eng. Knowledge base.
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För att skapa ett mer lättläst och minimalt bevis kommer baklängesstegning att ske.
Denna beh̊aller endast de regler som användes för att derivera slutsatsen. Detta görs
främst för att visualiseringen av ett s̊adant bevis blir lättare att först̊a för användaren.

I tabell 3.5 visas ett bevis utfört med naturlig deduktion följt av samma bevis utfört
med resolution som visas i tabell 3.6.

Tabell 3.5: Bevis utfört med naturlig deduktion
1. ∀x.(P (x) → Q(x)) Premiss
2. P (x0) Premiss
3. P (x0) → Q(x0) ∀xe 1
4. Q(x0) →e 3,2
5. ∀x.Q(x) ∀xi 2-4

Tabell 3.6: Bevis utfört med resolution
1. ∀x.(P (x) → Q(x)) Premiss
2. P (x0) Premiss
3. ¬∀x.Q(x) Antagande
4. ¬P (x0) ∨Q(x0) CNF 1
5. ¬Q(f0) CNF 3
6. Q(x0) Resolution 2,4
7. ⊥ Resolution 5,6
8. ∀x.Q(x) RAA 3-8

I tabell 3.6 syns det t.ex. att unifiering används d̊a resolutionregeln appliceras p̊a raderna
5 och 6. Formlerna ¬Q(f0) och Q(x0) är logiskt ekvivalenta givet att den allkvantifierade
variabeln x0 har värdet f0, vilket i detta fallet är en skolemkonstant.

3.4.2 Semantisk tableau

Algoritmen för semantisk tableau kan brytas ner i ett antal steg. Indata (premisserna
och den negerade slutsatsen) konverteras inledningsvis till disjunktiv normalform (som
förklarats i avsnitt 2.3). Detta gör att algoritmen behöver hantera mycket färre regler,
men hämmar utskriften av beviset som d̊a blir mer sv̊arläst.

Väl konverterat g̊ar informationen igenom en funktion som delar upp den i tre delar.
Första urskiljningen är att alla termer (förutom funktioner) skrivs till en egen lista. Detta
medför ocks̊a att alla termer sammankopplade av konjunktioner bryts isär och placeras i
tidigare nämnde lista. Andra mängden blir de predikat och funktioner som förekommer
i teoremet. P̊a grund av dess mer komplexa hantering i samband med allkvantifiering
(som togs upp i avsnitt 2.6.2) skiljs de åt till en egen lista. Den sista delen är alla
disjunktioner som är underlag för de förgreningar som görs. Ett ytterligare steg i denna
del av processen är att alla variabler som förekommer fr̊an allkvantifiering sparas undan
separat vars anledning blir mer konkret nedan i samma avsnitt.

När väl informationen är uppdelad börjar algoritmen med att försöka hitta en motsägelse
bland variablerna och konstanterna. Om det inte finns n̊agon motsägelse där görs nästa
försök bland predikaten och funktionerna. Om den inte finner tv̊a komplementära pre-
dikat eller funktioner (t.ex. P (x) och ¬P (x)) kommer sökningen istället att, med hjälp
av unifiering, finna kvantifieringar som tillsammans med befintliga predikat och funk-
tioner kan leda till en motsägelse. Om inte heller detta leder till en motsägelse kommer
istället den första disjunktionen att brytas isär och användas som underlag för en fort-
satt sökning. Algoritmen kommer d̊a som tidigare att bryta isär information och söka
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vidare efter motsägelser. Detta fortsätter tills att antingen en motsägelse är funnen i
varje gren (se avsnitt 2.6.2) eller tills det i en gren inte g̊ar att finna en motsägelse,
vilket terminerar algoritmen.

Om sökningen lyckas kommer varje söksteg och en lista av använda regler att skrivas
ut, i andra fall visas de söksteg som togs fram tills att sökningen terminerats.

I fall där allkvantifiering finns med i problemet sker en del extra steg utöver den
vanliga sökningen. Det viktigaste är att varje allkvantifiering sparas för att användas
som underlag när algoritmen söker efter möjligheter att finna en motsägelse med predikat
och funktioner. När sökningen vänder sig till predikat och funktioner för att stänga en
gren görs en ny instansiering av den allkvantifierade formeln. Instansieringen används
sedan för att försöka unifieras med övrig information och p̊a s̊a vis finna en motsägelse.

De regler som genereras vid en lyckad sökning används för att skapa en representation
av lösningen i trädform (se 4.1). En stor fördel med att skriva om lösningen till en
trädrepresentationen är att alla de regler som applicerats men inte används för att finna
lösningen kan ignoreras, vilket gör det resulterande trädet mycket mer läsbart. Trädet
kan slutligen användas för att skapa en LATEX-representation som kan ses i figur 3.5.
Samma bevis visas även i listform i tabell 3.7.

Tabell 3.7: Ett bevis i listform.
1. r Premiss
2. p ∧ q Premiss
3. ¬(q ∧ r) Antagande
4. ¬q ∨ ¬r DNF 3
5. ¬r Antagande
6. ⊥ ¬e 1 − 4
7. q ∧e2 2
8. ¬q Antagande
9. ⊥ ¬e 6 − 7
10. ⊥ ∨e 3, 4 − 5, 7 − 8
11. q ∧ r RAA 3 − 9

[¬(q ∧ r)]
¬q ∨ ¬r DNF

r [¬r]

⊥
¬e

p ∧ q
q ∧e2 [¬q]

⊥
¬e

⊥
∨e

q ∧ r RAA

Figur 3.5: Trädrepsentation av ett bevis i LATEX.

3.4.3 Narrowing

Att utföra narrowingberäkningar utan begränsningar är ganska meningslöst eftersom
sökrymden är stor. Det visar sig dock att trädstrukturen hos bevis konstruerade genom
naturlig deduktion passar ganska bra eftersom varje regel har sitt eget förutsättningskrav.
Man kan allts̊a kontrollera dessa bevis lokalt genom att för varje regel kontrollera att
den deriverade formeln passar med de förutsättande formlerna upp̊at. Representationer
som t.ex. en linjär form medför merarbete d̊a narrowing b̊ade m̊aste gissa reglerna och
vilka intervall de skall appliceras p̊a innan dess riktighet kan kontrolleras. Lokaliteten
hos trädrepresentationen betyder ocks̊a att det passar för narrowing d̊a vissa delar av
beviset kan vara partiellt instansierade men änd̊a g̊a igenom checkern.
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Ett bevis för följden φ1, φ2, . . . , φn ⊢ ψ byggs nedifr̊an med slutsatsen ψ som grund
varp̊a regler appliceras ”baklänges” och p̊a detta vis manipulerar denna tills hypoteser
eller premisser φi n̊as. Detta fungerar alldeles utmärkt för de flesta deduktionsregler.
Dock finns det n̊agra som ställer till problem som t.ex.

φ ∨ ψ

[φ]
....
χ

[ψ]
....
χ

χ ∨e

I detta fall närmar vi oss regeln underifr̊an enbart med information om formeln χ. Att
verifiera s̊a att grenarna:

φ ∨ ψ

[φ]
....
χ

[ψ]
....
χ

stämmer lokalt skapar problem d̊a vi inte känner φ och ψ utan enbart att χ är deriverad
fr̊an dessa. En möjlig lösning är att l̊ata narrowing instansiera formlerna φ och ψ s̊a att
bevisverifierare kan kontrollera riktigheten lokalt utan att instansiera hela trädet. Detta
visar sig vara n̊agot kostsamt d̊a den fullständiga begränsningen p̊a dessa formler inte
kommer fram förrän ett löv n̊atts.

Den speciella narrowingstrategi som används är en variant av lazy narrowing, ut-
vecklad av Lindblad et al [15], att användas för programverifiering av haskellprogram i
verktyget Lazy SmallCheck[19]. Fullständigheten för sökningen följer av fullständigheten
för strategin [18] samt motsvarande i naturlig deduktion som är v̊ar omskrivningsteori.
Narrowingimplementationen tillhandah̊aller begränsningar enligt nedanst̊aende haskell-
datatyp.

data Prop = Ok Int

| Fail

| AndS Prop Prop

| AndR Prop Prop

| EqInt Int Int

| IntervalInt Int Int Int

En egen datastruktur för bevis deriverade av narrowing fick utvecklas p̊a grund av
de begränsningar i lokal information som finns att tillg̊a vid lokal verifiering samt att
narrowingbiblioteket enbart instansierar heltal.

data Proof = AndI Proof Proof

| OrI1 Proof

| OrI2 Proof

| HypRef Int [Elim]

[..]

Vid de flesta eliminationsregler används en elegantare form av regel HypRef där man
direkt refererar till en premiss eller deriverat antagande och därmed slipper problem i
de flesta regler som uppenbarades i ∨e. D̊a kan dessa regler istället elimineras ovanifr̊an
utan att narrowing m̊aste instansiera hela formeln explicit. För att detta skall fungera
s̊a konverteras alla identifierare för variabler, predikat och funktioner till heltal. Även
hypotesreferenser i löv görs med heltalsindexerade listor likt de Bruijn-index för lambda
kalkyl [3]. Rent tekniskt sker sökningen genom att verifieringsfunktionen bygger upp
ett träd av dessa begränsningar som m̊aste gälla för att just det verifierade beviset
skall fungera. Exempel p̊a detta kan vara intervall för vilka variabler som är till̊atna att
instansiera i n̊agon term. Hur begränsningarna som narrowingbiblioteket tillhandah̊aller
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kan användas kan ses för ∧i:
φ ψ

φ ∧ ψ
∧i

som kan verifieras genom att kräva att b̊ada delgrenarna φ och φ → ψ g̊ar igenom
okej. För narrowingbiblioteket motsvarar detta att b̊ada grenarna m̊aste evaluera till Ok
Int (där heltalet beskriver en kostnad för den instansieringen). Detta kan göras med
begränsningen AndS som uttrycker en konjunktion. Sjävla verifieringen kan g̊a till p̊a
detta vis:

check f (AndI a b) = case f of

And x y -> AndS (check x a) (check y b)

_ -> Fail
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Kapitel 4

Resultat och diskussion

I detta kapitel kommer resultaten och erfarenheterna fr̊an projektet att presenteras och
diskuteras. Först kommer en analys av implementationen av projektets kärna och se-
dan jämförs teorembevisarna med avseende p̊a hastighet, implementationssv̊arighet och
tydlighet av genererade bevis. Därefter kommer en lista med möjliga vidareutvecklingar
och slutligen följer ett stycke som knyter ihop rapporten och återkopplar till syfte och
projektmål.

4.1 Analys av projektets kärna

De moduler som utgör kärnan av projektet är representationerna av bevis, bevisverifi-
eraren och visualiseringen av bevis. Som nämnts i avsnitt 1.3 skrevs dessa i ett tidigt
skede av projektet för att ha en stabil grund att bygga vidare p̊a.

De abstrakta representationerna av bevis har alla olika för- och nackdelar. En fördel
med Proof är att scope för antaganden är inbyggt i strukturen vilket är smidigt när man
skall verifiera att bevis är korrekta. LProof har som fördel att den är väldigt enkel att
skriva ut och att det blir lättlästa och tydliga bevis. Den har dock inte n̊agot inbyggt
stöd för att representera scope för antaganden, vilket leder till en del extra arbete när
man verifierar dem. Med extra arbete menas att antagandens giltighet och huruvida
exempelvis en implikationsintroduktion verkligen börjar med ett antagande m̊aste ve-
rifieras. Det m̊aste ocks̊a kontrolleras att antaganden endast refereras till i sin helhet
utanför dess scope. B̊ade Proof och LProof har som nackdel att man i de automatiska
teorembevisarna m̊aste hantera alla nummerreferenser vid generering av bevis. Eftersom
TProof inte inneh̊aller n̊agra nummerreferenser är den lämplig att använda i teorembe-
visarna. Denna representation är den som mest p̊aminner om naturliga deduktionsträd
vilket gör den lämpad för att användas i LATEX-ritaren.

Visualiseringen av bevis gick förh̊allandevis lätt att implementera, d̊a funktionalite-
ten för att skriva ut listbevis utnyttjar autogenererade funktioner fr̊an BNFC. Funktio-
nen som skriver ut naturliga deduktionsträd i LATEXvar dock sv̊arare att implementera.
Att skriva ut bevisen var inte speciellt sv̊art eftersom LATEX-ritaren tar in ett TProof,
vilket är en väldigt intuitiv struktur att skriva ut p̊a detta sätt. Att f̊a dem att se bra
ut var dock inte lika enkelt, exempelvis var det förh̊allandevis sv̊art att undvika utskrift
av redundanta paranteser. Resultatet blev dock tillfredställande och bevisen är tydliga
och lättlästa.
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4.2 Analys av automatiska teorembevisare

För att kunna analysera och dra slutsatser rörande implementationen av teorembevi-
sarna har det utförts ett prestandamätning. De olika bevisarna har f̊att bevisa 22 olika
teorem 1000 g̊anger och tiden har mätts. Med denna data som grund jämförs de imple-
menterade metoderna.

Även läsbarheten för var och en av teorembevisarna jämförs. Läsbarhet har haft en
hög prioritet i projektet. Graden av läsbarhet för ett bevis beror p̊a flera olika faktorer;
hur stort det är, hur m̊anga olika inferensregler som använts, hur lätta formlerna i
beviset är att först̊a samt om beviset i sig utförts p̊a ett, för människan, intuitivt sätt.
Ett exempelproblem bevisas med var och en av bevismetoderna och presenteras p̊a
trädform för jämförelse. Slutligen diskuteras även sv̊arighetsgraden p̊a implementationen
för vardera metod.

4.2.1 Resultat av prestandamätning

Som det nämnts ovan har de implementerade teorembevisarna genomg̊att en mätning
för att bilda en uppfattning om hur snabbt var och en av dem bevisar olika teorem.
Dessa teorem valdes till en mängd som alla teorembevisarna klarade av att bevisa.
I tabell 4.1 visas resultatet av denna mätning. Det har utförts p̊a en dator med en
Intel(R) Core(TM) 2 Duo 2.0GHz processor med 4096KB cache och 4GB dualchannel
667MHz RAM. Applikationen har inför mätningen kompilerats med GHC 6.8.2 och
följande kommandorad har använts: ”ghc –make Main.hs -O2 -optc=03”.

Tabell 4.1: Resultat av prestandamätning.
Nr. Problem Resolution Tableau Narrowing

1. ⊢ ¬p ∨ p 1,012 0,892 18,217
2. a, b ⊢ a→ b 1,192 0,912 1,388
3. p, q ⊢ p ∧ q 1,288 1,116 1,56
4. p,¬¬(q ∧ r) ⊢ ¬¬(p ∧ r) 1,444 1,42 11,637
5. p ⊢ p 0,86 0,768 0,948
6. p ∧ q, r ⊢ q ∧ r 1,336 1,288 2,156
7. p ∧ q ⊢ p 1,044 0,976 1,232
8. p ∧ q ∧ r, s ∧ t ⊢ q ∧ s 1,428 1,3 2,772
9. p ∧ q → r ⊢ p→ q → r 1,724 1,448 5,412
10. p→ q, p ⊢ q 1,192 1,248 1,416
11. p→ q ⊢ ¬p ∨ q 1,476 1,228 39,762
12. p→ q → r, p→ q, p ⊢ r 1,584 1,34 3,064
13. p ∨ q ∨ r ⊢ p ∨ q ∨ r 1,66 1,316 1,104
14. a ∨ b ⊢ b ∨ a 1,412 1,148 9,673
15. a ∨ b ∨ a ⊢ a ∨ b 1,3 1,496 3,952
16. p→ q ⊢ ¬q → ¬p 1,308 1,32 3,324
17. ¬q → ¬p ⊢ p→ ¬¬q 1,424 1,272 4,488
18. ∀x.(P (x) → Q(x)), P (t) ⊢ Q(t) 1,396 1,44 2,2
19. ∀x.(P (x) → ¬Q(x)), P (t) ⊢ ¬Q(t) 1,328 1,328 2,532
20. ∀x.P (x) ⊢ ∀x.P (x) 1,244 1,18 1,284
21. ∃x.P (x) ⊢ ∃x.P (x) 1,244 1,128 1,424
22. ∀y.(y ∧ b), a ∨ c ⊢ b 1,444 1,116 1,684

Totalt: 29,34 26,68 121,229

Tiderna har mätts med unix-kommandot time och det är tiden ”user” som valts. Den-
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na tid beskriver hur l̊ang tid processorn tar p̊a sig för att exekvera just det angivna
kommandot, utan att ta hänsyn till tid nedlagd p̊a andra program som körs samtidigt.
Resultatet är inte tänkt att ge en rättvis bild av hur snabbt varje enskild teorembevisare
jobbar, utan meningen är att man ska kunna jämföra dem sinsemellan.

4.2.2 Thousands of Problems for Theorem Provers (TPTP)

TPTP[27] tillhandah̊aller en stor mängd problem som är menade att utgöra en rigorös
bas för testning av automatiska teorembevisare. Problemen är indelade i kategorier och
har i m̊anga fall en viss bevisalgoritm i åtanke.

För att undersöka hur bra v̊ara olika teorembevisarna arbetar p̊a mer komplexa och
intressantare problem har tv̊a problem fr̊an TPTP testats, nämligen pusslen: PUZ001+1.p
och PUZ061+1.p. Resolution lyckades bevisa b̊ada dessa p̊a mycket kort tid och det se-
nare beviset blir hela 38 steg l̊angt. Tableaumetoden finner ett bevis för ett av pusslen
(PUZ061+1.p), men inte för det andra. Det är möjligt att narrowing klarar att lösa
pusslen, men det tar i s̊adana fall mycket l̊ang tid.

Det är b̊ade roligt och intressant att n̊agon av bevisarna klarade av att hitta bevis
eftersom detta test verkligen mäter var gränsen g̊ar för v̊art system. Nedan visas pusslet
PUZ001+1.p (fritt översatt) och man kan se att det inte är helt trivialt:

N̊agon som bor p̊a Hovs Herrg̊ard har dödat Agatha. Agatha, betjänten och Charles

bor p̊a Hovs Herrg̊ard och är de enda som bor där. Alla mördare hatar sina offer

och är inte rikare än sina offer. Charles hatar ingen som Agatha hatar. Agatha

hatar alla utom betjänten. Betjänten hatar alla som inte är rikare än Agatha.

Betjänten hatar alla som Agatha hatar. Ingen hatar alla. Agatha hatar inte alla.

Vem mördade Agatha?

Teoremet som skall bevisas är att Agatha mördade sig själv, det vill säga att Agatha
begick självmord.

4.2.3 Resolution

Eftersom all indata konverteras till konjunktiv normalform och därmed skolemiseras,
tas kvantifierare helt bort. När sedan alla konjunktioner brutits ner i klausuler återst̊ar
endast en delmängd av det logiska spr̊aket som använts i projektet. För att deducera ett
bevis används endast 4 (av totalt 22) inferensregler vilket tillsammans med den enkla
och effektiva resolutionsregeln gör det mycket lätt att bevisa teorem.

Denna teorembevisare har dock en stor svaghet; många onödiga beräkningar görs för
att deducera ett bevis. Varje klausul i kunskapsbasen testas mot resten, vilket innebär
att antalet beräkningar som görs är kvadratiskt mot antalet klausuler i kunskapsbasen.
Om det sedan finns m̊anga literaler i klausulerna s̊a kommer även själva appliceringen
av inferensregeln bli mycket beräkningstung. Detta leder till att det tar mycket l̊ang tid
att bedöma om ett problem är satisfierbart.

I tabell 4.1 g̊ar det att avläsa att resolution är lite l̊angsammare än tableau p̊a de
flesta av bevisen. Hastigheten är dock bra eftersom alla bevis tar ungefär lika l̊ang tid.
Det är sv̊art att dra n̊agra djupare slutsatser fr̊an mätdata, men man kan spekulera
i att resolution skulle vara snabbare än tableau p̊a mer avancerade problem med fler
kvantifierare. Detta eftersom tableau d̊a m̊aste h̊alla reda p̊a unifierare i olika grenar,
vilket resolution inte behöver hantera. Ett s̊adant resultat har presenterats i [6] där
resolution och tableau jämförts, och resolution visades vara den mer effektiva av de tv̊a.
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Läsbarhet av genererade bevis

Bevisning av teorem med resolution är passande för datorer. Detta eftersom bevisning
sker med en mycket liten uppsättning inferensregler och att dessa appliceras i samma
ordning för alla teorem. Metoden är därför inte lika intuitiv som naturlig deduktion.

Bevis blir i de flesta fall större än om de gjorts för hand. Detta eftersom ett antal steg
m̊aste tas för att förbereda indata innan appliceringen av resolutionregeln kan börja. En
förutsättning för att först̊a dessa bevis är att man har kunskap om hur konvertering av
formler till konjunktiv normalform g̊ar till samt hur applicering av resolutionregeln g̊ar
till.

I detta projekt har det valts att ha resolutionregeln som en enkel inferensregel, men
den kan även ses som ett makro best̊aende av inferensregler fr̊an naturlig deduktion
som producerar samma resultat. Om inte resolutionregeln används som ett makro, utan
ersätts av regler fr̊an naturlig deduktion, leder detta till att bevis blir nästintill omöjliga
att först̊a. En applicering av resolutionregeln p̊a tv̊a klausuler, inneh̊allande tv̊a literaler
var och endast ett par komplementära literaler, inneh̊aller 20-talet steg.

r
[¬(q ∧ r)]
¬q ∨ ¬r CNF

¬q RES
p ∧ q
q ∧e2

⊥
RES

q ∧ r RAA

Figur 4.1: Teorem bevisat med resolution och utskrivet som ett naturligt deduktionsträd.

Generellt sett producerar resolution dock bevis som g̊ar att läsa och först̊a, givet att
antalet klausuler och literaler inte är alltför stora. Det används ocks̊a f̊a inferensregler
vilket leder till att det är mindre att ta i beaktning. Ett exempel p̊a ett bevis deriverat
med resolution återfinnes i figur 4.1 där problem 6 i tabell 4.1 bevisats.

Implementation

Resolution var den lättaste teorembevisaren att implementera. Själva kärnfunktionaliteten
skrevs p̊a mycket kort tid i och med den effektiva inferensregeln och det begränsade lo-
giska spr̊ak som användes.

Modulen korrigerades bara n̊agra f̊a g̊anger, t.ex. d̊a unifiering implementerades,
men eftersom korrigeringarna bara begränsades till inferensregeln gick även det snabbt.
Majoriteten av de buggar som berört resolution har istället upptäckts i modulerna som
sköter konvertering till konjunktiv normalform och unifiering.

Det fanns till och med tid att implementera ett antal optimeringar och i det omr̊adet
har en stor majoritet av tiden investerats. Bland annat implementerades en optimering
för att förbättra prestandan och en för förbättring av läsbarheten av genererade bevis.
Den senare nämnda optimering tog nästan längre tid att implementera än den första
versionen av hela modulen och var därför den mest tidskrävande delen.

En sak som underlättade implementeringen av denna modul var att det redan fanns
en färdig representation av ett linjärt bevis och att bevisverifieraren hade en linjär struk-
tur. Detta kan jämföras med de b̊ada andra teorembevisarna som bygger p̊a trädstrukturer
och därför haltades n̊agot av att funktionaliteten för konvertering mellan de tv̊a repre-
sentationerna länge kr̊anglade.

Implementeringen av denna teorembevisare har ocks̊a varit mycket underh̊allande
eftersom man till stor del f̊ar fria händer, med undantaget fr̊an konverteringen till kon-
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junktiv normalform och användandet av resolutionregeln. Det finns m̊anga dokumente-
rade strategier [25] för att förbättra prestanda, t.ex. vilka klausuler man ska applicera
resolution p̊a samt hur man väljer att dela upp kunskapsbasen.

4.2.4 Semantisk Tableau

Enligt tabell 4.1 är tableau den av de tre metoderna som arbetar snabbast p̊a de test
problemen som använts. Det kan ocks̊a noteras att sökrymden för tableau ökar mycket
snabbt när en stor mängd disjunktioner innefattas i teoremet. Detta kan besk̊adas i
resultaten för problem nummer 4, 9 och 15 som alla leder till m̊anga disjunktioner efter
att ha konverterats till DNF. Andra mätvärden som st̊ar ut är ett par som inneh̊aller
allkvantifiering, nämligen problem 18 och 19. Hanteringen av just predikat och allkvan-
tifieringar innefattar en mängd fler beräkningssteg som annars inte utförs. Som teorin
tagit upp m̊aste teorembevisaren börja leta efter möjliga nya instansieringar av variabler
och detta leder längre exekveringstid. Enligt testet som utförts klarar tableau de flesta
problemen relativt väl, men detta kan till stor del bero p̊a att m̊anga av dem varken
inneh̊aller n̊agra kvantifierare eller predikat.

Läsbarhet av genererade bevis

Algoritmen är designad för att effektivt avgöra om ett problem g̊ar att bevisa och inte
för att producera lättlästa lösningar. Läsbarheten av teoremen lider av att alla form-
ler översätts till DNF, och att ett motsägelsebevis eftersträvas istället för att direkt
visa slutsatsen. I de flesta fall best̊ar lösningen av ett antal konjuktionseliminationer i
början, n̊agra antagande som avslutas med en negationselimination och en disjunktions-
elimination som binder ihop allt. Eftersom ett motsägelsebevis deriveras s̊a avslutas det
alltid med att RAA-regeln appliceras. I figur 4.2 visas det sjätte problemet ur tabell 4.1
bevisat med semantisk tableau.

[¬(q ∧ r)]
¬q ∨ ¬r DNF

r [¬r]

⊥
¬e

p ∧ q
q ∧e2 [¬q]

⊥
¬e

⊥
∨e

q ∧ r RAA

Figur 4.2: Teorem bevisat med semantisk tableau och utskrivet som ett naturligt deduk-
tionsträd.

Implementation

Tableau-implementering har, för en delmängd av det logiska systemet som inte inneh̊aller
kvantifierare eller predikat, haft rätt struktur sedan starten. Men p̊a grund av otillräcklig
teoretisk grund har det gjorts om flera g̊anger för att p̊a ett bra sätt bevisa problem som
innefattar allkvantifiering. Detta har varit den sv̊araste aspekten av implementationen.
Slutsatsen är att tableaumetoden till en början är enkel att implementera, men när
allkvantifiering introduceras dyker m̊anga problem upp. Ett r̊ad för den som vill göra
en egen implementation är att förbereda sig väl teoretiskt med n̊agon bra bok, som till
exempel [5] skriven av Fitting.
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4.2.5 Narrowing

Denna bevismetod visar sig vara den l̊angsammaste av de tre vilket ocks̊a var väntat.
Detta beror p̊a att metoden bara är en indirekt sökning, den ”först̊ar” inte spr̊aket
p̊a samma sätt som resolution eller tableau-metoderna. Vid varje narrowingsteg körs
bevisverifieraren p̊a problemet för att verifiera att allting fortfarande gäller och återge
de nya begränsningarna. Längst tid att bevisa tog problemen 1, 4 och 11 enligt tabell
4.1. Alla tre har gemensamt att de bevisas genom att derivera ⊥ vilket ger längre
bevis än i de andra fallen vilket ocks̊a leder till en längre sökning. Jämfört med de
andra tv̊a metoderna s̊a verkar narrowingsökningen rätt oanvändbar, men eftersom den
jobbar p̊a partiellt instansierade termer kan den fortfarande vara till nytta i en interaktiv
bevisassistent.

I [16] undersöks hur väl narrowing lämpar sig i Agda, en bevisassistent för Martin-
Lövs intuitionistiska typteori. Även här kommer författaren till samma slutsats att det
är l̊angsamt, men snabbt nog för sm̊a bevis där människan är flaskhalsen. I stycket 4.3
diskuteras en grafiska teorembevisare lite ytterligare som tilllämpning för teorembeviare.

Läsbarhet av genererade bevis

Bevis hittade med narrowingsökningen kan se ut precis hur man önskar genom att ändra
utseendet p̊a inferensreglerna i verifieraren. Människor uppskattar troligen bevis funna
med narrowing d̊a de inneh̊aller ett rikare spr̊ak av inferensregler (jämfört med resolution
och semantisk tableau) som liknar hur människor drar slutledningar. I implementatio-
nen används hela spr̊aket av naturlig deduktion utom vissa deriverade regler som MT
(formel 2.15 p̊a sidan 14) och LEM (formel 2.18 p̊a sidan 14). I figur 4.3 visas det sjätte
problemet i tabell 4.1.

p ∧ q
q ∧e2 r

q ∧ r ∧i

Figur 4.3: Teorem bevisat med narrowing och utskrivet som ett naturligt deduktionsträd.

Implementation

I teorin borde narrowingsökningen vara den enklaste metoden av de tre att implementera
d̊a den enbart best̊ar av en bevisverifierare p̊a trädform. Tanken var att använda en
färdig verifierare och med n̊agra sm̊a modifikationer f̊a den att bli en fullständig sökning
med minimal arbetsinsats. I praktiken visade det sig dock vara ganska sv̊art att f̊a till
sökningen d̊a man enbart har indirekt kontroll genom de begränsningar som återges till
algoritmen. Sv̊arigheterna i sökningen ligger att finna kreativa men effektiva sätt att
begränsa hur omskrivningsreglerna appliceras p̊a slutsatsen. En djupare först̊aelse för
omskrivningssystem och definitionsträd är troligen till mycket stor nytta vid designen
av dessa. Ett exempel p̊a en s̊adan begränsning är t.ex. att en kostnad sätts p̊a regeln
för motsägelsebevis och ökas ordentligt för varje g̊ang den används i samma gren. En
s̊adan kostnad ”uppmuntrar” sökningen att försöka med andra regler före den använder
samma regel igen d̊a den görs med ett ökande djup p̊a den maximala kostnaden.

4.3 Vidareutveckling

Detta avsnitt kommer handla om potentiella vidareutvecklingar p̊a projektet. Eftersom
det är ett väldigt brett ämne finns det väldigt m̊anga olika tillämpningar som vore
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intressanta att implementera. Detta avsnitt berör dock endast utökningar som vore
relevanta för just detta projekt.

Rikare spr̊ak

För att f̊a ett rikare spr̊ak vore det intressant att utöka det med fler konnektiv. Detta
skulle exempelvis kunna innebära att man lägger till ekvivalens (dubbelriktad implika-
tion) och likhet.

Fler bevisverifierare

Bevisverifieraren kan endast verifiera korrektheten hos bevis av typen Proof. Detta in-
nebär att konvertering fr̊an LProof respektive TProof m̊aste göras för att verifiera bevis
genererade av teorembevisarna. Om bevisverifierare som hanterar dessa datatyper im-
plementeras slipper man detta och det g̊ar d̊a även att testa dessa mot varandra för att
försäkra sig om att b̊ade konverteringen och verifierarna sinsemellan är korrekta.

Parser för TPTP

Det var otroligt arbetsamt att manuellt skriva in problemen fr̊an TPTP direkt i v̊ar egen
syntax och därmed ett hinder för att testa mer en ett f̊atal problem fr̊an denna databas.
D̊a den inneh̊aller ett tusental problem kan detta ses som en nödvändig utökning för
effektiv optimering av metoderna.

Optimerad teorembevisare

Det vore intressant att försöka optimera n̊agon av teorembevisarna och försöka lösa
större problem. Exempelvis kunde man försöka bevisa fler teorem fr̊an TPTP.

Noggrannare testning

Eftersom det är ett stort system med m̊anga möjliga indata, är det sv̊art att testa att
allt i systemet fungerar som det ska. Det har b̊ade funnits en uppsättning med problem
som bevisverifieraren testats mot och en uppsättning som teorembevisarna testats mot.
Samlingen med problem hade behövts utökas för att göra en riktigt rigorös testning och
optimering av algoritmerna. En möjlig lösning p̊a detta hade varit att skriva en parser
för TPTP enligt ovan eller kanske generera problem automatiskt.

Grafisk bevisassistent

För studenter och lärare kan en interaktiv teorembevisare med ett grafiskt gränsnitt
vara ett bra verktyg vid inlärningen av predikatlogik. Denna skulle kunna fungera s̊a att
man interaktivt försöker bevisa ett teorem och att programmet d̊a kan hjälpa en och
säga till om man gör fel eller visa möjliga lösningar.

4.4 Avslutande reflektioner

Studien var ämnad att beröra olika implementationsmetoder för att verifiera, bevisa
och visualisera logiska slutledningar. De olika teorembevisarna skulle även jämföras ut-
ifr̊an prestanda, implementationssv̊arighet och hur tydliga och lättlästa de deducerade
bevisen är. Allt detta har gjorts och m̊anga slutsatser har dragits ang̊aende fördelar
och nackdelar med de olika representationerna samt designvalen i implementationen av
teorembevisarna. Teorembevisarna har jämförts och man kan sluta sig till att:
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• V̊ar implementation av semantisk tableau är den snabbaste.

• Resolution var enklast att implementera och var den enda som klarade b̊ada av de
tv̊a problemen fr̊an TPTP.

• Narrowing producerar mest lättlästa bevis.
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tive Language. Version 2.3.1. Available at http://www.fdi.ucm.es/profesor/

fernan/toy/, October 2007.

[5] Melvin Fitting. First Order Logic and Automated Theorem Proving. Springer, 1996.

[6] Andreas L.E. Folkler. Automated theorem proving: Resolution vs. tableaux, March
2002.

[7] Gerhard Gentzen. Untersuchungen über das logische schließen. Mathematische
Zeitschrift, 39(1):405–431, 1935.
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[9] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und
verwandter systeme. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

[10] Michael Hanus. Implementations of functional logic languages. http://www.

informatik.uni-kiel.de/~mh/FLP/implementations.html.

[11] Michael Hanus. Multi-paradigm declarative languages. I: Proceedings of the Inter-
national Conference on Logic Programming (ICLP 2007), ss 45–75. Springer LNCS
4670, 2007.

[12] Karel Hrbacek, Thomas Jech och Hrbacek Hrbacek. Introduction to Set Theory,
Third Edition, Revised and Expanded. CRC, Juni 1999.

[13] Michael Huth och Mark Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, New York, NY, USA, 2004.

[14] Matt Kaufmann och J Strother Moore. Some key research problems in automated
theorem proving for hardware and software verification. Real Academia de Ciencias
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